基于深度森林算法的电力系统短期负荷预测

来源 :电力建设 | 被引量 : 0次 | 上传用户:fgh45
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为了提高电力系统短期负荷预测的精确度,解决目前基于机器学习算法的负荷预测需要人为凭经验对超参数进行大量设置和调整的问题,该文将深度森林算法引入了电力系统短期负荷预测领域。深度森林算法包含多粒度扫描阶段和级联森林阶段,具有表征学习的能力。与深度神经网络相比,深度森林算法能够进行高效并行训练,无须大量人为设置和调整超参数。该文选取了某地区实际电力负荷值以及气象因素数据,分别利用了前21天和前40天的数据对深度森林算法进行训练,并将其负荷预测结果与智能算法和传统分类算法的负荷预测结果进行了对比分析。试验结果表明深度森林算法具有高效的电力系统短期负荷预测的能力。
其他文献