论文部分内容阅读
随机优化的粒子群算法(PSO)在解决待优化问题时,仅利用适应度函数对单个粒子所找到解的优劣进行判断,缺乏对种群总体状态的评估,导致算法经过一定次数的迭代后陷入局部收敛。改进算法BPPSO利用BP神经网络对种群进行状态划分,并根据划分结果对种群实施相应的扰动操作,从种群的角度对算法进行改进。仿真实验表明,改进算法能够增加种群多样性,提高优化精度,较好地解决了Ad Hoc网络的QoS路由问题,从而验证了所提算法的可行性和有效性。