论文部分内容阅读
在传统预测混凝土强度的基础上,提出一种基于人工智能的新的预测方法,建立了两种神经网络模型:BP神经网络和RBF神经网络,实现了从新拌混凝土成分及其特性到硬化后混凝土强度之间的复杂的非线性映射。通过对试验数据的学习,网络结构可以早期预测混凝土28d抗压强度。另外,还利用BP神经网络模拟分析了混凝土成分质和量的变化对抗压强度的影响,其结果符合已知的经典混凝土强度变化规律,表明神经网络模型具有较高的精度和较强的泛化能力。