论文部分内容阅读
摘要本文简要讨论Gronwall不等式的研究进展,并给出关于如下的一类非线性Volterra积分不等式的一个结果:
w(u(t))≤g(t)+∑ni=1∫αi(t)αi(t0)fi(t,s)∏mj=1Hij(u(s))Gij(maxs-h≤ξ≤su(ξ))ds.
关键词非线性积分不等式;Gronwall不等式;Gronwall类不等式;Volterra积分微分不等式;Lyapunov第二方法
中图分类号O178
文献标志码A
1美国德克萨斯农工大学康莫斯分校数学系,康莫斯,德州,75428
0关于Gronwall不等式
1919年,在研究一个带参变量的微分方程系统时,Gronwall[1]给出如下的著名引理:
定理1(Gronwall原始不等式)对x0≤x≤x0+h,连续函数z=z(x)满足不等式:
0≤z≤∫xx0[Mz+A]dx,
其中常数M和A非负,那么
0≤z≤AheMh,x0≤x≤x0+h.
在以后的24年里,Gronwall原始不等式都没引起关注.1943年,Bellman[2]推广了Gronwall原始不等式使得M可以是函数,并且不等式也被陈述得更为简单、明了.这个结果被称之为GronwallBellman不等式,在许多文献中均可查到,如文献[26].
定理2(GronwallBellman不等式)已知u(t)和f(t)是定义在[a,b]区间上的非负连续函数,c是非负常数,如果
u(t)≤c+∫taf(s)u(s)ds,a≤t≤b,
那么
u(t)≤ce∫taf(s)ds,a≤t≤b.
1958年,Bellman[7]进一步改进了上述定理,使得c可以是一个非负非增连续函数.
定理3(Bellman不等式)如果y(t)是正的,且单调增,x(t),z(t)≥0,那么
x(t)≤y(t)+∫tαx(s)z(s)ds,
蕴含着
x(t)≤y(t)e∫tαz(s)ds,α≤t≤β.
今天看,以上的3个定理都较为粗糙,因为定理的陈述不够完整、条件还可以改进.作为对前面3个定理的统一推广,1966年,Halanay在专著[8]中,给出了下面的定理4.这个定理被广泛引用,如文献[9].其条件比以上3个定理都要弱一些.这里,我们使用HaleLunel[1993,p15]的陈述.
定理4如果u和α是定义在[a,b]区间上的实值连续函数,
学报(自然科學版),2017,9(4):391394 Journal of Nanjing University of Information Science and Technology(Natural Science Edition),2017,9(4):391394
王廷秀.一类非线性Volterra积分不等式.
WANG Tingxiu.
A nonlinear Volterratype integral inequality.
β≥0在[a,b]区间上可积,且满足
u(t)≤α(t)+∫taβ(s)u(s)ds,a≤t≤b,
那么
u(t)≤α(t)+∫taβ(s)α(s)e∫tsβ(u)duds,a≤t≤b.
此外,如果α非减,那么
u(t)≤α(t)e∫taβ(s)ds,a≤t≤b.
不像前面3个定理,定理4只要求β非负.当然,如果u是非负的,α也相应必须非负.Gronwall不等式在微分方程有界性、稳定性、存在性及其他定性性质的研究中有了大量、广泛的应用,对Gronwall不等式的应用、推广、研究爆发性增长,并产生了许多新的研究方向.1998年出版的Pachpatte等的专著[6],收集、总结了在此之前对Gronwall不等式的研究、推广、应用.在众多推广中,本文讨论下面的推广.2000年,Lipovan[10]研究了
u(t)≤k+∫α(t)α(t0)f(s)w(u(s))ds.
2012年,Bohner等[11] 研究了下面的不等式:
ψ(u(t))≤k+∑ni=1∫αi(t)αi(t0)fi(s)up(s)ωi(u(s))ds+∑mj=1∫βj(t)βj(t0)gj(s)up(s)j(maxξ∈[s-h,s] u(ξ))ds. (1)
2015年,Wang[12]推广了不等式(1),用更一般的复合函数Hij(u(s))取代up(s),用
fi(s)up(s)ωi(u(s))j(maxξ∈[s-h,s] u(ξ))
合并了两个级数,研究了下面的不等式:
w(u(t))≤K+
∑ni=1∫αi(t)αi(t0)fi(s)∏mj=1Hij(u(s))Gij(maxs-h≤ξ≤su(ξ))ds. (2)
本文对不等式(2)进一步加以推广,使得K可以是函数,fi(s)可以是fi(t,s).从而,我们研究Volterra不等式:
w(u(t))≤g(t)+∑ni=1∫αi(t)αi(t0)fi(t,s)∏mj=1Hij(u(s))Gij(maxs-h≤ξ≤su(ξ))ds. (3)
1一类非线性Volterra积分不等式
我们研究不等式(3),并得到一个结果.由于不等式(3)涉及7类函数,为此,我们需要如下6个条件和记号:已知h>0,t0,T为常数,0≤t0 (A2) αi∈C1([t0,T),R+)非减,并且αi(t)≤t,t∈[t0,T),i=1,2,…,n;
(A3) fi(t,s)∈C([t0,T)×[t0,T),R)对t为连续非减函数,i=1,2,…,n;
(A4) Hij,Gij∈C(R+,R+)非减,且当x>0,Hij(x)>0,Gij(x)>0;
(A5) w∈C(R+,R+)为严格递增函数,w(0)=0,limt→∞w(t)=∞;
(A6) u∈C([-h,T),R+).
定理5如果u(t)满足不等式(3)以及以上6个条件,从(A1)—(A6).那么不等式(3)的解是:
u(t)≤w-1W-1W(g(t))+∑ni=1∫αi(t)αi(t0)fi(t,s)ds,t∈[t0,T).
其中
W(r)=∫rr01Hm(w-1(s))Gm(w-1(s))ds,0≤r<∞,
r0是一个合适的非负常数,使得W(r)有定义.
H(r)=max1≤i≤n,1≤j≤m{Hij(r)},
G(r)=max1≤i≤n,1≤j≤m{Gij(r)}.
证明取η为一任意常数满足t0≤t≤η w(u(t))≤g(η)+
∑ni=1∫αi(t)αi(t0)fi(η,s)∏mj=1Hij(u(s))Gijmaxs-h≤ξ≤su(ξ)ds.
对t0≤t≤η,定义上面的不等式的右边为Z(t),即
Z(t)=g(η)+
∑ni=1∫αi(t)αi(t0)fi(η,s)∏mj=1Hij(u(s))Gij(maxs-h≤ξ≤su(ξ))ds.
不难看出,Z(t)非减,且0≤w(u(t))≤Z(t),t∈[t0,η].
由(A5),w-1存在且具有和w相同的性质.因此,
u(t)≤w-1(Z(t)),t0≤t≤η.
此外,
maxs-h≤ξ≤su(ξ)≤maxs-h≤ξ≤sw-1(Z(ξ))=w-1(Z(s)),t0≤s≤η.
因此,对t∈[t0,η],
Z(t)≤g(η)+∑ni=1∫αi(t)αi(t0)fi(η,s)∏mj=1
Hij(w-1(Z(s)))Gij(w-1(Z(s)))ds≤
g(η)+∑ni=1∫αi(t)αi(t0)fi(η,s)∏mj=1
H(w-1(Z(s)))G(w-1(Z(s)))ds≤
g(η)+∑ni=1∫αi(t)αi(t0)fi(η,s)
Hm(w-1(Z(s)))Gm(w-1(Z(s)))ds.
再定義上面的不等式的右边为R(t),即:
R(t)=g(η)+
∑ni=1∫αi(t)αi(t0)fi(η,s)Hm(w-1(Z(s)))Gm(w-1(Z(s)))ds,t0≤t≤η 显然,R(t0)=g(η),0≤Z(t)≤R(t),t0≤t≤η R′(t)=∑ni=1fi(η,αi(t))Hm(w-1(Z(αi(t))))·
Gm(w-1(Z(αi(t))))αi′(t)≤
∑ni=1fi(η,αi(t))Hm(w-1(Z(t)))·
Gm(w-1(Z(t)))αi′(t)≤
∑ni=1fi(η,αi(t))Hm(w-1(R(t)))·
Gm(w-1(R(t)))αi′(t)≤
Hm(w-1(R(t)))Gm(w-1(R(t)))∑ni=1fi(η,αi(t))αi′(t).
所以,
R′(t)Hm(w-1(R(t)))Gm(w-1(R(t)))≤∑ni=1fi(η,αi(t))αi′(t).
即:
d(W(R(t)))dt≤∑ni=1fi(η,αi(t))αi′(t).
对上式从t0到t积分,t∈[t0,η],我们得到:
W(R(t))-W(R(t0))≤∫tt0∑ni=1fi(η,αi(s))αi′(s)ds=∫α(t)α(t0)∑ni=1fi(η,s)ds,
W(R(t))≤W(g(η))+∑ni=1∫α(t)α(t0)fi(η,s)ds.
因为W连续且严格增,所以W-1存在、连续、严格增.对上式使用W-1,我们得到:
R(t)≤W-1W(g(η))+∑ni=1∫αi(t)αi(t0)fi(η,s)ds,t∈[t0,η],
w(u(t))≤Z(t)≤R(t)≤W-1W(g(η))+∑ni=1∫αi(t)αi(t0)fi(η,s)ds,t∈[t0,η],
u(t)≤w-1W-1W(g(η))+
∑ni=1∫αi(t)αi(t0)fi(η,s)ds,t∈[t0,η].
在上式,取t=η,可得:
u(η)≤w-1W-1W(g(η))+
∑ni=1∫αi(η)αi(t0)fi(η,s)ds,t∈[t0,η].
由于η是区间t0≤η u(t)≤w-1W-1W(g(t))+
∑ni=1∫αi(t)αi(t0)fi(t,s)ds,t∈[t0,T). 证毕.
2应用
我们的结果可以很容易地应用到微分方程的稳定性理论中.例如,我们考虑滞后型泛函微分方程
dudt=F(t,ut), (4)
在用Lyapunov第二方法研究微分方程稳定性时,如下条件经常可见:
1) W1(|(0)|)≤V(t,) 2) W1(|(0)|)≤V(t,) 3) W1(|u(t)|X)≤V(t,ut)≤W2(D(t,ut))+∫tt-hL(s)W1(|u(s)|X)ds;
4) V′(4)(t,)≤0;
5) V′(4)(t,)≤-W4(|(0)|);
6) V′(4)(t,)≤-W4(∫tt-h|(s)|ds);
7) V(4)(t,ut)≤-η(t)W2(D(t,ut))+P(t).
關于与这些条件相关的假设,定理可在众多的文献中查到,如文献[45,1220].这些条件加上定理5,可以得到对Lyapunov函数和解的上界,文献[13]有一个很相近的例子.再如,定理5可以很容易地应用到Volterra积分方程:
X(t)=a(t)+∫tt-αg(t,s)X(s)ds,X∈Rn. (5)
关于方程(5),很多论文研究过,如文献[5,2122].
参考文献
References
[1]Gronwall T H.Note on the derivatives with respect to a parameter of the solutions of a system of differential equations[J].Annals of Mathematics,1919,20(4):292296
[2]Bellman R.The stability of solutions of linear differential equations[J].Duke Mathenatical Journal,1943,10(4):643647
[3]Bellman R.Stability theory of differential equations[M].New York:McGrawHill,1953
[4]Burton T A.Stability and periodic solutions of ordinary and functionaldifferential equations[M].Orlando,Florida:Academic Press,1985
[5]Burton T A.Volterra integral and differential equations[M].2nd ed.New York:Elsevier,2005
[6]Pachpatte B G.Inequalities for differential and integral equations[M].London:Academic Press,1998
[7]Bellman R.Asymptotic series for the solutions of linear differentialdifference equations[J].Rendiconti del Circolo Matematico di Palermo Series 2,1958,7(3):261269
[8]Halanay A.Differential equations:Stability,oscillations,time lags[M].New York and London:Academic Press,1966
[9]Hale J,Lunel S.Theory of functional differential equations[M].New York:SpringerVerlag,1993
[10]Lipovan O.A retarded Gronwalllike inequality and its applications[J].Journal of Mathematical Analysis and Applications,2000,252(1):389401
[11]Bohner M,Hristova S,Stefanova K.Nonlinear integral inequalities involving maxima of the unknown scalar functions[J].Mathematical Inequalities & Applications,2012,15(4):811825
[12]Wang T X.Generalization of Grownwalls inequality and its applications in functional differential equations[J].Communications in Applied Analysis,2015,19:679688
[13]Wang T X.Stability in abstract functional differential equations.Part I:General theorems[J].Journal of Mathematical Analysis and Applications,1994,186(2):534558 [14]Wang T X.Stability in abstract functional differential equations.Part II:Applications[J].Journal of Mathematical Analysis and Applications,1994,186(3):835861
[15]Wang T X.Lower and upper bounds of solutions of functional differential equations[J].Dynamics of Continuous,Discrete and Impulsive Systems,Series A:Mathematical Analysis,2013,20(1):131141
[16]Wang T X.Inequalities of Solutions of Volterra integral and differential equations[J].Electronic Journal of Qualitative Theory of Differential Equations,2009(28):538543
[17]Wang T X.Exponential stability and inequalities of abstract functional differential equations[J].Journal of Mathematical Analysis and Applications,2006,342(2):982991
[18]Wang T X.Inequalities and stability in a linear scalar functional differential equation[J].Journal of Mathematical Analysis and Applications,2004,298(1):3344
[19]Wang T X.Wazewskis inequality in a linear Volterra integrodifferential equations[M]//Corduneanu C,Sandberg I W.Volterra equations and applications.Amsterdam:Gordon and Breach Science Publishers,2000:483492
[20]廖曉昕.动力系统的稳定性理论和应用[M].北京:国防工业出版社,2000
LIAO Xiaoxin.Theory and application of stability for dynamic systems[M].Beijing:National Defense Industry Press,2000
[21]Burton T A.Lyapunov functional for integral equations[M].Bloomington,Indiana:Trafford Publishing,2008
[22]Wang T X.Bounded solutions and periodic solutions in integral equations[J].Dynamics of Continuous,Discrete,and Impulsive Systems,2000,7(1):1931
w(u(t))≤g(t)+∑ni=1∫αi(t)αi(t0)fi(t,s)∏mj=1Hij(u(s))Gij(maxs-h≤ξ≤su(ξ))ds.
关键词非线性积分不等式;Gronwall不等式;Gronwall类不等式;Volterra积分微分不等式;Lyapunov第二方法
中图分类号O178
文献标志码A
1美国德克萨斯农工大学康莫斯分校数学系,康莫斯,德州,75428
0关于Gronwall不等式
1919年,在研究一个带参变量的微分方程系统时,Gronwall[1]给出如下的著名引理:
定理1(Gronwall原始不等式)对x0≤x≤x0+h,连续函数z=z(x)满足不等式:
0≤z≤∫xx0[Mz+A]dx,
其中常数M和A非负,那么
0≤z≤AheMh,x0≤x≤x0+h.
在以后的24年里,Gronwall原始不等式都没引起关注.1943年,Bellman[2]推广了Gronwall原始不等式使得M可以是函数,并且不等式也被陈述得更为简单、明了.这个结果被称之为GronwallBellman不等式,在许多文献中均可查到,如文献[26].
定理2(GronwallBellman不等式)已知u(t)和f(t)是定义在[a,b]区间上的非负连续函数,c是非负常数,如果
u(t)≤c+∫taf(s)u(s)ds,a≤t≤b,
那么
u(t)≤ce∫taf(s)ds,a≤t≤b.
1958年,Bellman[7]进一步改进了上述定理,使得c可以是一个非负非增连续函数.
定理3(Bellman不等式)如果y(t)是正的,且单调增,x(t),z(t)≥0,那么
x(t)≤y(t)+∫tαx(s)z(s)ds,
蕴含着
x(t)≤y(t)e∫tαz(s)ds,α≤t≤β.
今天看,以上的3个定理都较为粗糙,因为定理的陈述不够完整、条件还可以改进.作为对前面3个定理的统一推广,1966年,Halanay在专著[8]中,给出了下面的定理4.这个定理被广泛引用,如文献[9].其条件比以上3个定理都要弱一些.这里,我们使用HaleLunel[1993,p15]的陈述.
定理4如果u和α是定义在[a,b]区间上的实值连续函数,
学报(自然科學版),2017,9(4):391394 Journal of Nanjing University of Information Science and Technology(Natural Science Edition),2017,9(4):391394
王廷秀.一类非线性Volterra积分不等式.
WANG Tingxiu.
A nonlinear Volterratype integral inequality.
β≥0在[a,b]区间上可积,且满足
u(t)≤α(t)+∫taβ(s)u(s)ds,a≤t≤b,
那么
u(t)≤α(t)+∫taβ(s)α(s)e∫tsβ(u)duds,a≤t≤b.
此外,如果α非减,那么
u(t)≤α(t)e∫taβ(s)ds,a≤t≤b.
不像前面3个定理,定理4只要求β非负.当然,如果u是非负的,α也相应必须非负.Gronwall不等式在微分方程有界性、稳定性、存在性及其他定性性质的研究中有了大量、广泛的应用,对Gronwall不等式的应用、推广、研究爆发性增长,并产生了许多新的研究方向.1998年出版的Pachpatte等的专著[6],收集、总结了在此之前对Gronwall不等式的研究、推广、应用.在众多推广中,本文讨论下面的推广.2000年,Lipovan[10]研究了
u(t)≤k+∫α(t)α(t0)f(s)w(u(s))ds.
2012年,Bohner等[11] 研究了下面的不等式:
ψ(u(t))≤k+∑ni=1∫αi(t)αi(t0)fi(s)up(s)ωi(u(s))ds+∑mj=1∫βj(t)βj(t0)gj(s)up(s)j(maxξ∈[s-h,s] u(ξ))ds. (1)
2015年,Wang[12]推广了不等式(1),用更一般的复合函数Hij(u(s))取代up(s),用
fi(s)up(s)ωi(u(s))j(maxξ∈[s-h,s] u(ξ))
合并了两个级数,研究了下面的不等式:
w(u(t))≤K+
∑ni=1∫αi(t)αi(t0)fi(s)∏mj=1Hij(u(s))Gij(maxs-h≤ξ≤su(ξ))ds. (2)
本文对不等式(2)进一步加以推广,使得K可以是函数,fi(s)可以是fi(t,s).从而,我们研究Volterra不等式:
w(u(t))≤g(t)+∑ni=1∫αi(t)αi(t0)fi(t,s)∏mj=1Hij(u(s))Gij(maxs-h≤ξ≤su(ξ))ds. (3)
1一类非线性Volterra积分不等式
我们研究不等式(3),并得到一个结果.由于不等式(3)涉及7类函数,为此,我们需要如下6个条件和记号:已知h>0,t0,T为常数,0≤t0
(A3) fi(t,s)∈C([t0,T)×[t0,T),R)对t为连续非减函数,i=1,2,…,n;
(A4) Hij,Gij∈C(R+,R+)非减,且当x>0,Hij(x)>0,Gij(x)>0;
(A5) w∈C(R+,R+)为严格递增函数,w(0)=0,limt→∞w(t)=∞;
(A6) u∈C([-h,T),R+).
定理5如果u(t)满足不等式(3)以及以上6个条件,从(A1)—(A6).那么不等式(3)的解是:
u(t)≤w-1W-1W(g(t))+∑ni=1∫αi(t)αi(t0)fi(t,s)ds,t∈[t0,T).
其中
W(r)=∫rr01Hm(w-1(s))Gm(w-1(s))ds,0≤r<∞,
r0是一个合适的非负常数,使得W(r)有定义.
H(r)=max1≤i≤n,1≤j≤m{Hij(r)},
G(r)=max1≤i≤n,1≤j≤m{Gij(r)}.
证明取η为一任意常数满足t0≤t≤η
∑ni=1∫αi(t)αi(t0)fi(η,s)∏mj=1Hij(u(s))Gijmaxs-h≤ξ≤su(ξ)ds.
对t0≤t≤η,定义上面的不等式的右边为Z(t),即
Z(t)=g(η)+
∑ni=1∫αi(t)αi(t0)fi(η,s)∏mj=1Hij(u(s))Gij(maxs-h≤ξ≤su(ξ))ds.
不难看出,Z(t)非减,且0≤w(u(t))≤Z(t),t∈[t0,η].
由(A5),w-1存在且具有和w相同的性质.因此,
u(t)≤w-1(Z(t)),t0≤t≤η.
此外,
maxs-h≤ξ≤su(ξ)≤maxs-h≤ξ≤sw-1(Z(ξ))=w-1(Z(s)),t0≤s≤η.
因此,对t∈[t0,η],
Z(t)≤g(η)+∑ni=1∫αi(t)αi(t0)fi(η,s)∏mj=1
Hij(w-1(Z(s)))Gij(w-1(Z(s)))ds≤
g(η)+∑ni=1∫αi(t)αi(t0)fi(η,s)∏mj=1
H(w-1(Z(s)))G(w-1(Z(s)))ds≤
g(η)+∑ni=1∫αi(t)αi(t0)fi(η,s)
Hm(w-1(Z(s)))Gm(w-1(Z(s)))ds.
再定義上面的不等式的右边为R(t),即:
R(t)=g(η)+
∑ni=1∫αi(t)αi(t0)fi(η,s)Hm(w-1(Z(s)))Gm(w-1(Z(s)))ds,t0≤t≤η
Gm(w-1(Z(αi(t))))αi′(t)≤
∑ni=1fi(η,αi(t))Hm(w-1(Z(t)))·
Gm(w-1(Z(t)))αi′(t)≤
∑ni=1fi(η,αi(t))Hm(w-1(R(t)))·
Gm(w-1(R(t)))αi′(t)≤
Hm(w-1(R(t)))Gm(w-1(R(t)))∑ni=1fi(η,αi(t))αi′(t).
所以,
R′(t)Hm(w-1(R(t)))Gm(w-1(R(t)))≤∑ni=1fi(η,αi(t))αi′(t).
即:
d(W(R(t)))dt≤∑ni=1fi(η,αi(t))αi′(t).
对上式从t0到t积分,t∈[t0,η],我们得到:
W(R(t))-W(R(t0))≤∫tt0∑ni=1fi(η,αi(s))αi′(s)ds=∫α(t)α(t0)∑ni=1fi(η,s)ds,
W(R(t))≤W(g(η))+∑ni=1∫α(t)α(t0)fi(η,s)ds.
因为W连续且严格增,所以W-1存在、连续、严格增.对上式使用W-1,我们得到:
R(t)≤W-1W(g(η))+∑ni=1∫αi(t)αi(t0)fi(η,s)ds,t∈[t0,η],
w(u(t))≤Z(t)≤R(t)≤W-1W(g(η))+∑ni=1∫αi(t)αi(t0)fi(η,s)ds,t∈[t0,η],
u(t)≤w-1W-1W(g(η))+
∑ni=1∫αi(t)αi(t0)fi(η,s)ds,t∈[t0,η].
在上式,取t=η,可得:
u(η)≤w-1W-1W(g(η))+
∑ni=1∫αi(η)αi(t0)fi(η,s)ds,t∈[t0,η].
由于η是区间t0≤η
∑ni=1∫αi(t)αi(t0)fi(t,s)ds,t∈[t0,T). 证毕.
2应用
我们的结果可以很容易地应用到微分方程的稳定性理论中.例如,我们考虑滞后型泛函微分方程
dudt=F(t,ut), (4)
在用Lyapunov第二方法研究微分方程稳定性时,如下条件经常可见:
1) W1(|(0)|)≤V(t,)
4) V′(4)(t,)≤0;
5) V′(4)(t,)≤-W4(|(0)|);
6) V′(4)(t,)≤-W4(∫tt-h|(s)|ds);
7) V(4)(t,ut)≤-η(t)W2(D(t,ut))+P(t).
關于与这些条件相关的假设,定理可在众多的文献中查到,如文献[45,1220].这些条件加上定理5,可以得到对Lyapunov函数和解的上界,文献[13]有一个很相近的例子.再如,定理5可以很容易地应用到Volterra积分方程:
X(t)=a(t)+∫tt-αg(t,s)X(s)ds,X∈Rn. (5)
关于方程(5),很多论文研究过,如文献[5,2122].
参考文献
References
[1]Gronwall T H.Note on the derivatives with respect to a parameter of the solutions of a system of differential equations[J].Annals of Mathematics,1919,20(4):292296
[2]Bellman R.The stability of solutions of linear differential equations[J].Duke Mathenatical Journal,1943,10(4):643647
[3]Bellman R.Stability theory of differential equations[M].New York:McGrawHill,1953
[4]Burton T A.Stability and periodic solutions of ordinary and functionaldifferential equations[M].Orlando,Florida:Academic Press,1985
[5]Burton T A.Volterra integral and differential equations[M].2nd ed.New York:Elsevier,2005
[6]Pachpatte B G.Inequalities for differential and integral equations[M].London:Academic Press,1998
[7]Bellman R.Asymptotic series for the solutions of linear differentialdifference equations[J].Rendiconti del Circolo Matematico di Palermo Series 2,1958,7(3):261269
[8]Halanay A.Differential equations:Stability,oscillations,time lags[M].New York and London:Academic Press,1966
[9]Hale J,Lunel S.Theory of functional differential equations[M].New York:SpringerVerlag,1993
[10]Lipovan O.A retarded Gronwalllike inequality and its applications[J].Journal of Mathematical Analysis and Applications,2000,252(1):389401
[11]Bohner M,Hristova S,Stefanova K.Nonlinear integral inequalities involving maxima of the unknown scalar functions[J].Mathematical Inequalities & Applications,2012,15(4):811825
[12]Wang T X.Generalization of Grownwalls inequality and its applications in functional differential equations[J].Communications in Applied Analysis,2015,19:679688
[13]Wang T X.Stability in abstract functional differential equations.Part I:General theorems[J].Journal of Mathematical Analysis and Applications,1994,186(2):534558 [14]Wang T X.Stability in abstract functional differential equations.Part II:Applications[J].Journal of Mathematical Analysis and Applications,1994,186(3):835861
[15]Wang T X.Lower and upper bounds of solutions of functional differential equations[J].Dynamics of Continuous,Discrete and Impulsive Systems,Series A:Mathematical Analysis,2013,20(1):131141
[16]Wang T X.Inequalities of Solutions of Volterra integral and differential equations[J].Electronic Journal of Qualitative Theory of Differential Equations,2009(28):538543
[17]Wang T X.Exponential stability and inequalities of abstract functional differential equations[J].Journal of Mathematical Analysis and Applications,2006,342(2):982991
[18]Wang T X.Inequalities and stability in a linear scalar functional differential equation[J].Journal of Mathematical Analysis and Applications,2004,298(1):3344
[19]Wang T X.Wazewskis inequality in a linear Volterra integrodifferential equations[M]//Corduneanu C,Sandberg I W.Volterra equations and applications.Amsterdam:Gordon and Breach Science Publishers,2000:483492
[20]廖曉昕.动力系统的稳定性理论和应用[M].北京:国防工业出版社,2000
LIAO Xiaoxin.Theory and application of stability for dynamic systems[M].Beijing:National Defense Industry Press,2000
[21]Burton T A.Lyapunov functional for integral equations[M].Bloomington,Indiana:Trafford Publishing,2008
[22]Wang T X.Bounded solutions and periodic solutions in integral equations[J].Dynamics of Continuous,Discrete,and Impulsive Systems,2000,7(1):1931