论文部分内容阅读
现有的行人重识别方法主要关注于学习行人的局部特征来实现跨摄像机条件下的行人辨识。然而在人体部件存在运动或遮挡、背景干扰等行人数据非完备条件下,会导致行人局部辨识信息丢失概率的增加。针对这个问题,提出了一种多尺度联合学习方法对行人辨识特征进行精细化表达。该方法包含3个分支网络,分别提取行人的粗粒度全局特征、细粒度全局特征和细粒度局部特征。其中粗粒度全局分支通过融合不同层次的语义信息来增强全局特征的丰富性;细粒度全局分支通过联合全部局部特征,在对全局特征进行细粒度描述的同时学习行人局部部件间的相关性;细