论文部分内容阅读
研究了一种基于泊松重构的红外和可见光图像融合算法,算法在梯度域内实现图像信息的融合,可有效避免传统空域和变换域方法在融合图像中由于局部亮度不一致而产生伪边缘。另外,提出的算法在源图像梯度融合时,同时考虑了图像的局部结构显著和视觉显著特征,能够在保留源图像更多细节的同时突出输入图像的视觉显著目标信息。通过与其他最新融合算法的对比实验结果显示本文算法获得的融合图像既有突出的红外目标,又有清晰的可见光背景细节,并且不会产生伪影和噪声,同时客观评价指标也有显著的优势。