论文部分内容阅读
土壤含盐量的预测对合理配置水资源,防治土壤次生盐碱化等具有重要的指导意义。在阐述BP人工神经网络原理的基础上,针对影响土壤含盐量的主要因素,建立了多因子土壤含盐量的3层BP网络模型,以土壤含水率、地下水矿化度、地下水pH值、地下水埋深、相对湿度、降雨量、蒸发量作为模型输入参数,土壤含盐量作为模型输出,对土壤含盐量进行了预测。结果表明,BP神经网络模型预测土壤含盐量的最大误差为8.78%,平均误差为5.99%,模型具有较高的预测精度。