论文部分内容阅读
图像或视频中的人员目标检测,一般采用单个深层神经网络检测器(SSD)算法.但在复杂场景下,SSD算法因场景复杂、物体重叠、遮挡等干扰,检测精度大大降低.在SSD算法中加入反卷积网络反馈用于增加环境感知信息;采用辅助损失函数以促进损失降低,并将复杂场景中的目标检测多分类问题转换为二分类问题.以无人机拍摄的复杂场景下的行人数据集为例进行人员目标检测实验,对比分析多种检测方法的准确率表明,改进后的SSD算法在检测速度和识别精度上均提高明显.