论文部分内容阅读
目的:探讨基于深度学习的分类模型对腹盆部CT图像范围及期相进行自动分类的可行性。方法:回顾性搜集本院2019年10月14日-2019年10月18日PACS中连续416例患者的腹盆部CT图像(数据集A)。按照扫描范围分为腹部、腹盆部、盆部三类,按照扫描期相分为平扫、动脉期、门静脉期、延迟期和排泄期五类。以3D-ResNet为基础架构,训练CT图像范围及期相的分类模型。利用该模型预测2020年1月1日-2020年1月3日本院连续657例患者的腹盆部CT图像(数据集B)。以影像医师的分类结果为金标准,采用混淆矩