【摘 要】
:
如何在位置差分隐私保护中实现更合理的噪声添加是当前研究的一大热点,但在不同的位置添加相同噪声的隐私保护模式会导致服务可用性和隐私保护度下降。针对这问题,提出了一种融合语义位置的差分私有位置隐私保护方法,该方法首先利用“地理不可区分性”的框架构建预期距离,然后通过定义隐私质量函数和需求函数构建语义位置信息来确定不同位置点的敏感度,最后依据位置点的敏感度为不同类型的区域细粒度地添加Laplace噪声,系统地解决了位置隐私保护、服务可用性和时间开销之间的矛盾。在两个公开数据集上进行仿真实验,与已有的方法从基于贝
【基金项目】
:
国家自然科学基金(61762058),兰州交通大学“百名青年优秀人才培养计划”基金。
论文部分内容阅读
如何在位置差分隐私保护中实现更合理的噪声添加是当前研究的一大热点,但在不同的位置添加相同噪声的隐私保护模式会导致服务可用性和隐私保护度下降。针对这问题,提出了一种融合语义位置的差分私有位置隐私保护方法,该方法首先利用“地理不可区分性”的框架构建预期距离,然后通过定义隐私质量函数和需求函数构建语义位置信息来确定不同位置点的敏感度,最后依据位置点的敏感度为不同类型的区域细粒度地添加Laplace噪声,系统地解决了位置隐私保护、服务可用性和时间开销之间的矛盾。在两个公开数据集上进行仿真实验,与已有的方法从基于贝
其他文献
深度学习在各个领域得到了普遍的应用,但是用户在应用深度学习时仍然面临两方面的问题:(1)深度学习有着复杂的理论背景,非专业用户缺乏建模以及调优的背景知识,难以构建性能优化的模型;(2)数据预处理、模型训练、预测等过程往往涉及比较复杂的编程实现,给没有程序设计基础的非专业用户在入门时带来了一定的困难。针对以上两点易用性问题,文中提出了一种易用的深度学习模型可视化构建系统DragDL,其目的在于降低用户进行数据预处理、模型训练、监控、在线预测等工作的难度。该系统基于PaddlePaddle框架,支持以拖拽图形
近年来,社交网络上虚假信息传播愈演愈烈,在政治、经济、心理学等方面造成了严重的社会影响。有效检测社交网络中的虚假信息并对其实施控制,是改善社交网络生态系统质量的重要手段,能为人们营造一个安全、可信的网络环境。文中首先通过调研近年来国内外社交网络虚假信息领域的代表性研究,针对虚假信息中的假新闻和谣言,梳理并给出其定义、特征及传播模型,然后介绍了目前虚假信息检测及传播控制的各种手段及方法,最后总结并分析了目前的检测及控制方法中仍存在的问题,继而进一步探讨和提出了该领域未来的研究方向。
随着物联网的普及,对物联网终端设备可使用能量的要求也在提高。能量收集技术拥有广阔前景,其能通过产生可再生能量来解决设备能量短缺问题。考虑到未知环境中可再生能量的不确定性,物联网终端设备需要合理有效的能量分配策略来保证系统持续稳定工作。文中提出了一种基于DQN的深度强化学习能量分配策略,该策略通过DQN算法直接与未知环境交互来逼近目标最优能量分配策略,而不依赖于环境的先验知识。在此基础上,还基于强化学习的特点和系统的非时变系统特征,提出了一种预训练算法来优化该策略的初始化状态和学习速率。在不同的信道数据条件
无线传播模型由于其对无线电波路径损耗的精准预测及对通信速率与覆盖范围等指标的估算起重要支撑作用,被广泛应用于民用和军用的通信系统设计。近年来,随着人工智能技术的发展,无线传播模型的发展方向也由传统的经验模型向基于数据驱动的智能无线传播模型发展,该类方法可有效地扩展无线传播模型的适用范围并减小预测误差。然而,由于在不同环境下智能无线传播模型的适用特征可能并不相同,如何针对不同场景最优地为智能无线传播模型设计以及选择输入特征是一个重要的研究问题。立足以上需求,提出了一种自适应智能无线传播模型。首先,该模型借鉴
深度学习在图像识别和声音处理方面已经展现了它优越的性能和广阔的发展前景,对于在禁飞区设立的无人机侦测系统,使用深度学习的方法判断无人机的声音信号具有一定的意义。为了获得更优的侦测效果,首先列举了目前具有代表性的特征提取和分类方法,并分析其优缺点;然后提出了一种扩大可用样本数量的数据处理方式,同时在实验中使用不同组合的深度学习网络训练样本;最后通过混淆矩阵法,针对不同信噪比模型、滤波下限、拟合程度、
在构造煤厚度的预测中,经常出现因各种限制性因素而导致预测精度不高的问题,因此提出了利用自适应遗传算法优化密度聚类(DBSCAN)优化RBF神经网络参数的方法对构造煤厚度进行预测。首先,对采区三维地震属性数据进行预处理,采用主成分分析算法(PCA)对该数据降维并消除变量之间的线性相关性。然后,构建预测构造煤厚度的RBF神经网络模型,并利用DBSCAN获取最佳核心点数据,通过计算得到k-means聚类的初始聚类中心,以此优化k-means算法,进而得到RBF神经网络隐含层基函数最优的中心向量,提高该模型预测的
针对分布式环境下多智能体系统的交互模型存在效率低、局部冲突消解困难、缺少实际应用场景等问题,基于Stac-kelberg博弈设计了多主多从的交互模型,并将其应用于指挥控制流程中指控方与参与方之间的交互博弈问题。首先通过对Stackelberg博弈模型的优化与多属性决策,设计出多主多从Stackelberg博弈的多智能体系统,并利用半正定的二次型性能指标的最优化正则性,引入一个正则Riccati方程来对Stackelberg博弈下的闭环解问题进行求解;然后基于图论相关知识建立基于边拉普拉斯矩阵的多智能体系统
推荐系统能够根据用户的兴趣特点和购买行为,向用户推荐感兴趣的信息和商品。随着用户生成内容UGC逐渐成为当前Web应用的主流,基于UGC的推荐也得到了广泛关注。区别于传统推荐中用户与物品的二元交互,有的UGC推荐采用协同过滤方法,提出了消费者、物品和生产者的三元交互,进而提高了推荐准确度,但大多算法都集中在推荐的性能而忽略了对鲁棒性的研究。因此,通过结合对抗性学习和协同过滤的思想,提出了一种基于对抗性学习的协同过滤推荐算法。首先在三元关系模型参数上加入对抗性扰动,使模型的性能降至最差,与此同时使用对抗性学习
传统的课堂行为识别方法侧重于交互行为本身的辨识,而非群体发现。课堂环境下实现交互群体的准确定位与发现,是进行个体行为识别的基础,但存在由遮挡造成的行为数据缺失问题。使用骨骼数据表示人体行为及运动轨迹,具有不受光线和背景干扰、数据表达简单等优点。针对骨骼数据的多人交互群体发现进行研究,提出了一种基于骨骼轨迹聚合模型的交互群体发现算法(Interactive Group Discovery Algor
在具有传输时限要求的认知无线电网络中,次用户需要机会式地在给定传输时限内使用无主用户占用的信道广播消息。针对此场景,文中提出一种新的传输时限下认知无线电网络的动态广播策略,允许各等待发送数据的次用户根据每个时隙载波侦听的观测、传输时限剩余时间和主用户占用信道模型实时调整发送概率。首先基于马尔可夫决策过程获得一种载波侦听理想观测假设下的最优策略和最大网络可靠性;然后据此提出一种适用于载波侦听实际观测能力的启发式策略,并通过马尔可夫决策过程建模获得此启发式策略的网络可靠性。仿真结果验证了理论分析的准确性,同时