论文部分内容阅读
为了实现制浆蒸煮终点的精确预测,建立了基于广义回归神经网络(GRNN)的预测模型.GRNN具有很强的非线性映射能力,能够根据样本数据逼近自变量与因变量之间隐含的关系,平滑参数的确定是GRNN训练的实质和难点.均衡地兼顾GRNN模型的预测性能与训练可行性,提出了一种平滑参数优化方法.通过分析训练样本分布、恰当地设计适应度函数,运用优进遗传算法(EGA)实现参数寻优.通过实验表明,所建立的制浆蒸煮终点预测模型,预测精度高、稳定性能好.