论文部分内容阅读
Ionic liquids have received wide attention due to their novel optoelectronic structures and devices as an optical means of regulating electricity. However, the quantitative testing and analysis of refractive index of ionic liquids under electric field are rarely carried out. In the present study, an experimental apparatus including a hollow prism is designed to measure the refractive indices of ionic liquids under different electric fields. Five groups of imidazole ionic liquids are experimentally investigated and an inversion is performed to determine the refractive indices under electric fields. The error propagation analysis of the apex angle and the minimum defl ection angle are conducted, and the machining accuracy requirements of the hollow prism are determined. The results show that the refractive indices of imidazole ionic liquids change with the light wavelength, following a downward convex parabola. Furthermore, the refractive index decreases with the carbon chain length of ionic liquid at a given wavelength, presenting an order of C3MImI>C4MImI>C5MImI>C3MImBr>C3MImBF4. Notably, the refractive index of imidazole ionic liquid exhibits a nonlinear change with the applied voltage at 546 nm and a monotonical decrease at 1529 nm. Besides, the variation of refractive index at 1529 nm with the applied voltage is larger than that at 546 nm and 1013 nm. Importantly, the variation of refractive index is contrary to that of absorption coefficient under electric field. This study illustrates that the theory of electrode and carrier transport can be used to explain the law of variation of n-k value of ionic liquid under the electric field, and provides the support for the evaluation of physical properties of ionic liquids, the measurement of optical functional parameters and the regulation of electric-optic performances of optical devices.