论文部分内容阅读
为进一步提升模型合理性和预测结果准确度,充分考虑公司财务情况历史值的影响,通过对不同时期的财务面板数据赋以不同权重,设计提出了一种基于Logit-动态BP神经网络的财务危机预警机制。实证结果显示,基于面板数据的新模型能更好地体现财务危机的发生机理,因而具备良好预警精度;在对财务危机公司及财务正常公司预警实验中,其预测性能均优于现有Logit回归分析模型和传统神经网络模型。