GWR模型在土壤重金属高光谱预测中的应用

来源 :地理学报 | 被引量 : 0次 | 上传用户:chcyu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目前土壤重金属高光谱反演模型大多忽视了重金属与光谱变量间相关关系的空间异质性,这与实际情况不相吻合,而地理权重回归(GWR)模型能有效地揭示变量间关系的空间异质性。本文以福州市土壤重金属Cd、Cu、Pb、Cr、Zn、Ni为对象,构建土壤重金属预测的GWR高光谱模型,并将预测结果与普通最小二乘法回归(OLS)结果进行比较分析,探讨GWR模型在土壤重金属高光谱预测中的适用性及局限性。结果表明:(1)GWR模型在土壤重金属高光谱预测中适用与否取决于重金属对光谱变量影响的空间异质性程度:对于Cr、Cu、Zn、Pb等对光谱变量影响空间异质性大的元素,其GWR预测精度较OLS提高明显,表现为GWR模型的调节R2较OLS模型有了明显提高,分别为OLS模型的2.69倍、2.01倍、1.87倍和1.53倍;而AIC值以及残差平方和较OLS模型却明显降低,AIC值减少量均大于3个单位,残差平方和则仅分别为OLS模型的25.33%、30.09%、47.22%和86.84%;对于Cd和Ni等对光谱变量影响空间异质性小的元素,相较于OLS模型,GWR模型的调节R2分别提高了0.015和0.007,残差平方和分别减少了5.97%和4.18%,但AIC值却分别增加了2.737和2.762,GWR预测效果改善不明显;(2)光谱变换可以有效增强土壤重金属的光谱特征,其中以光谱的倒数变换效果最好,而且该变换及其微分形式可以很好地提高模型的预测效果;(3)GWR模型的应用前提是变量间关系的空间非平稳性,适合在与土壤光谱变量间关系具有显著空间异质性的重金属高光谱预测中推广。
其他文献
<正>由杭州华博生物科技有限公司开发的华博保鲜剂,是采用生物技术提取的选择性蛋白膜,经复配各类生物、植物防腐成分,可根据不同的水果生命机理,阻止水果水分蒸发、防止水果
为深入探讨黄河三角洲地区盐碱地低效防护林形成的机理,选取林地破损的杨树林分(杨-1)为研究对象,以林地未受到破损的杨树林分(杨-2)为对照,对其林分生长情况、林地土壤及林