论文部分内容阅读
针对复杂背景下的行人检测问题,提出一种两级级联的快速行人检测算法。第一级采用竖直方向的边缘对称特征和基于行人先验知识的弱分类器,排除大部分非行人区域。第二级采用梯度方向直方图特征和基于LC-KSVD字典学习的稀疏表示分类算法,对剩余区域进行精确检测。实验结果表明,该算法在保证检测精度的同时缩短了行人检测的时间,并且对遮挡情况有较好的鲁棒性。在INRIA数据库上每幅图像平均检测时间仅为69ms,对数平均漏检率为38%,较CENTRIST+C4算法和HOG+SVM算法的漏检率有所降低,并提升了检测速度。