A TRAFFIC OVERSTOCK RESLOVE SCHEME IN WLAN

来源 :Journal of Electronics | 被引量 : 0次 | 上传用户:sasa826
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
A new Multiple Access Control (MAC) protocol-User Adaptive Scheduling Multiple Access (UASMA) protocol is proposed in this paper. It can well schedule the packet transmission according to the exact number of active Mobile Terminals (MTs) determined by self-organizing algorithm and adjust the number of packets sent by one node in one frame properly. UASMA protocol employs a special frame structure, which makes it possible to allocate channel resource to uplink and downlink traffic according to their respective service requirements. The proposed concept of referenced-frame-length can ensure the frame length varies in a certain range, and consequently increase the utilization efficiency of the channel greatly. Meanwhile, UASMA protocol uses an efficient collision resolution algorithm to guarantee that active MTs can access the channel rapidly. Finally, the performance of UASMA protocol is evaluated by simulation and it is also compared with carrier sense multiple access, rounding-poll and UPMA protocols. The results show that the UASMA has better performance than others. A new Multiple Access Control (MAC) protocol-User Adaptive Scheduling Multiple Access (UASMA) protocol is proposed in this paper. It can well schedule the packet transmission according to the exact number of active Mobile Terminals (MTs) determined by self-organizing algorithm and adjust the number of packets sent by one node in one frame properly. UASMA protocol employs a special frame structure, which makes it possible to allocate channel resource to uplink and downlink traffic according to their respective service requirements. The proposed concept of referenced-frame -length can ensure the frame length varies in a certain range, and led increase the utilization efficiency of the channel greatly. Meanwhile, UASMA protocol uses an efficient collision resolution algorithm to guarantee that the active MTs can access the channel rapidly. Finally, the performance of UASMA protocol is evaluated by simulation and it is also compared with carrier sense multiple access, rounding-poll and UPMA protocols. The results show that the UASMA has better performance than others.
其他文献