论文部分内容阅读
设u=Tri(A,M,B)是三角代数,{φn}n∈N:u→u是一列线性映射.本文利用代数分解的方法,证明了如果对任意U,V∈u且U。V=P为标准幂等元,有φn([U,V]ξ)=Σi+j=n(φi(U)φj(V)-ξφi(V)φj(U))(ξ≠±1),则{φn}n∈N是一个高阶导子,其中φ0=id为恒等映射,■为Jordan积,[U,V]ξ=UV-ξVU为ξ-Lie积.