论文部分内容阅读
为了提升轴承故障诊断性能,提出了一种基于鲁棒局部均值分解(RLMD)和Kmeans++的轴承故障诊断方法。利用RLMD方法对轴承振动信号进行分解,得到乘积函数(PF),根据PF分量与原始振动信号的相关程度选择敏感PF分量,叠加敏感PF分量构成重构信号;通过计算原始振动信号和重构信号的时域、频域统计特征形成轴承故障特征集;利用线性判别分析(LDA)提取轴承故障的Fisher特征;通过Kmeans++聚类的方法对故障特征进行聚类,得到各工况轴承的聚类中心;通过计算测试样本与聚类中心之间的汉明贴近度来实现轴承故