论文部分内容阅读
【目的】选择一种最适宜的数学分析方法评价设施葡萄砧穗组合的环境适应性。【方法】测定9个葡萄砧穗组合的环境适应性参数,分别用熵值法、主成分分析法、Topsis评价法3种方法进行综合评价。【结果】用熵值法进行综合评价时,‘87-1’/‘抗砧1号’组合的环境适应性最强,‘87-1’/‘华葡1号’组合最差;用主成分分析综合评价时,‘87-1’/3309C组合环境适应性最强,‘87-1’/101-14组合最差。用Topsis法进行评价时,‘87-1’/3309C组合环境适应性最强,‘87-1’/‘抗砧1号’组合最差。3种方法的结果差异主要与其计算所得的权重差异、方法理论差异、数据标准化处理差异等有关。在葡萄砧穗组合的环境适应性评价中,由于环境适应性参数数据量小,专业性强,重要参数离散程度小,结合各砧穗组合的实际表现,以Topsis评价法的评价结果更符合实际情况。【结论】葡萄砧穗组合环境适应性评价更适合采用Topsis方法,‘87-1’/3309C组合环境适应性最好。
【Objective】 The objective of this study was to select the most appropriate mathematical analysis method for assessing the environmental adaptability of grapevine heads. 【Method】 The environmental adaptability parameters of nine grapevine heads were determined. Three methods of entropy, principal component analysis and Topsis were used for comprehensive evaluation. 【Result】 The results showed that ’87-1’ / ’Anvushi No.1’ had the strongest environmental adaptability when using the comprehensive evaluation method of entropy method, and the worst combination of ’87-1’ / ’Huapu 1’ In the comprehensive evaluation of component analysis, the combination of ’87-1 ’/ 3309C had the strongest environmental adaptability and the worst combination of ’87-1’ / 101-14. When evaluated by the Topsis method, the combination of ’87-1 ’/ 3309C had the strongest environmental adaptability and the worst combination of ’87-1’ / ’Anvil No.1’. The results of the three methods are mainly related to the difference of the calculated weights, the differences of methodology and the standardization of data processing. In the evaluation of environmental adaptability of grapevine heads combination, the evaluation results of Topsis evaluation method are more in line with the actual results due to the small amount of environmental adaptability parameter data, the strong specialty and the small discretization of important parameters. Happening. 【Conclusion】 The Topsis method is more suitable for evaluating the environmental adaptability of the grapevine heads, and the combination of ’87 -1 ’/ 3309C is the best for environmental adaptability.