论文部分内容阅读
目的准确预测蠕墨铸铁加工过程中的表面质量,指导加工参数调整,保证加工过程中加工质量的稳定,运用差分进化算法优化的SVM模型(DE-SVM)构建蠕墨铸铁表面粗糙度(Ra)预测模型和加工参数选择方法。方法采用DE-SVM提高支持向量机回归模型的预测精度,建立针对实际加工材料的表面粗糙度预测模型,基于构建的预测模型,挖掘表面粗糙度与加工参数之间的关系,从而获得较优的加工参数。结果结合蠕墨铸铁的铣削加工实验数据,对比DE-SVM与常用优化算法(粒子群优化算法(PSO)和遗传算法(GA))优化的SVM模型,DE-S