非参数估计法环状静电传感器灵敏度仿真研究

来源 :传感器与微系统 | 被引量 : 0次 | 上传用户:abczxhzxh
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
气力输送广泛存在于化工过程,针对气固两相流参数测量展开一系列研究。通过引入统计学中非参数核估计方法,结合拟合优度和仿真数据样本最终拟合出数学模型,模型满足高斯分布,理论上给出了静电信号满足高斯分布的猜想。对静电传感器测量系统进行改造使得信号输出线可以加长2~3 m,为后续设备的测量提供了便利。采用Maxwell仿真软件进行仿真,得到不同的传感器参数对空间灵敏度特性的影响。最后在实验设备上进行了实验,并证实了文中得到的结论。
其他文献
现如今社会不断发展,各个行业都在改进创新,对新技术的要求越来越高。空间信息系统在交通、航运等多个行业发挥越来越重要的作用,并且各个行业对该系统的要求也在不断提高。各个产业的发展要求地理信息系统不断改进升级,为此,在未来发展中国,大数据和地理信息系统必然会进一步融合发展,更好地满足各个行业需求。当前我国地理信息产业和科学技术领域研究的重点就是地理信息系统的创新,作为信息时代的典型技术,大数据技术必然
绿色勘探是一种通过使用先进的勘探手段,以科学管理和先进技术来指导绿色发展的概念,以最大限度地减少对整体环境影响的勘探过程,最大限度地减少对生态环境的干扰,并使生态环
针对两自由度直驱感应电机(2DoFDDIM)采用实心转子结构其性能指标较低的问题,设计了一种适用于2DoFDDIM的开槽铸铜转子结构.从有限元分析结果可以看出:开槽铸铜的转子结构可
模仿人体手指的构造,制作了一种以不同硬度的聚二甲基硅氧烷(PDMS)为外层材料,聚偏氟乙烯(PVDF)为传感元件的柔性触觉传感器,利用电荷放大器采集传感器与五种常见物体接触并滑动时产生的振动信号,对信号进行选取、滤波、提取特征值等处理,结合分类算法,对物体材质进行辨识分类。实验证明,此传感器对5种常见物体材质的识别率可以达到90%以上。
针对传统微夹钳输出位移小、夹持精度低的问题,设计一种大位移、高精度的三级放大非对称微夹钳。首先,完成微夹钳的结构设计,基于伪刚体模型计算出微夹钳理论放大倍数;其次对结构参数进行有限元优化,获取最优参数;最后通过有限元分析微夹钳性能。结果表明:设计的微夹钳工作空间占比大、反应灵敏、可平行夹持。在150 V最大电压下,无夹持对象时最大输出位移为381.97μm,实际放大比为19.1倍。与同类产品相比,有着较高的放大倍率和较高的夹持精度。
微热板气体传感器大多采用金属氧化物半导体气敏材料,通常需要工作在200~500℃的温度下才能获得良好的气敏特性。采用传统的直流电压加热模式时需要消耗数十毫瓦的功耗用于维持工作温度。必须进一步减小气体传感器的功耗,才能使之适用于微型无线传感网等对功耗要求苛刻的应用领域。研究了脉冲电压加热工作模式下微热板气体传感器对(20~100)×10-6乙醇的气敏响应,优化了加热脉冲周期和占空比。实验证明:将微热板功耗降低1个数量级仍能获得良好的气体检测性能。
在数字散斑相关运算的基础上,提出一种"回形"遍历的匹配算法。建立了图像采集系统和模拟运动目标并采集目标时序图像。采用十字模板作为匹配计算单元对时序图像进行相关性匹配计算,得到了目标物体在2 mm×2 mm范围内的运动轨迹,位移分辨率为0.025 mm。实验结果表明:这种基于"回形"遍历的跟踪计算方法可以用于目标运动轨迹的跟踪。
针对微机电系统(MEMS)陀螺受加工误差影响,驱动与检测模态之间存在与科氏力相位差为90°的正交耦合力,限制了陀螺零偏的稳定性的问题,设计了力平衡模式下的正交误差实时校正系统。系统科氏环路采用力平衡法实现闭环检测;正交环路通过调整校正电压,消除结构刚度耦合,实现实时校正。实验结果表明:实时校正系统有效抑制了正交误差,改善了陀螺零偏性能。在5~65℃温度范围内,零偏温漂由手动一次性校正的0.75°/s变为实时校正的0.1°/s,减小了7.5倍;室温下,零偏不稳定性由4.05°/h降低为0.96°/h。
为研究装配式混凝土结构的界面脱粘性能,采用压电陶瓷传感器对含/未含纳米材料的混凝土梁进行损伤监测。利用小波包理论分析加载下混凝土梁的界面脱粘损伤与能耗之间的关系。试验结果表明:与未含纳米材料的混凝土梁相比,含纳米材料的混凝土梁界面脱粘性能得到了很大改善。时域分析、小波包能量和损伤指标很好地解释了因纳米材料的加入提高混凝土梁强度的原因和定性地识别界面脱粘损伤程度。试验研究证明了基于压电陶瓷传感器的主动传感方法在装配式结构不可修复的界面损伤检测中具有极大的应用潜力。
在对压力信号的实际检测中,施加压力值的大小,压力的分布范围都是重要的检测数据。以纳米级乙炔炭黑、镀银玻璃微球作为导电填料,107硅橡胶作为基体材料,制备出压敏硅橡胶。以丝网印刷工艺制备出柔性电极阵列。最后,将压敏硅橡胶和柔性电极封装在一起,制备出三明治结构的10×10阵列式压力传感器。结果表明:制备出的柔性传感器尺寸小、密度大、成本低,可以实现压力大小和分布的检测。