论文部分内容阅读
高分辨电镜图像中原子峰位置的检测具有十分重要的现实意义,通过精确定量化原子峰位置可以分析物质在微观尺度上的结构形变、电极化矢量分布等重要信息.近年来深度学习技术在图像目标检测领域取得了巨大突破,这一技术可用在高分辨电镜图像处理上,因为原子位置的检测可以看作是一个目标检测问题.本文利用先进的机器学习方法,通过制作高质量原子图像样本集,使用YOLOv3目标识别框架对原子图像进行自动检测,达到预期效果,实现了深度学习技术在高分辨电镜图像处理领域的应用.该方法的运用有望突破自动处理动态、大量电镜图片的瓶颈问题.