一种基于变调整学习规则的模糊网页分类方法研究

来源 :计算机研究与发展 | 被引量 : 0次 | 上传用户:sallen009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
当类别之间交叉现象比较严重时,网页分类方法的精度就会下降.为准确地分类网页,首先给出一种模糊网页分类的系统结构,通过用成员函数替代分类网络中的权值变量,来提供一种可融入人类关于网页分类知识的机制.然后给出一种通用学习规则,来学习成员函数中的参数.通过理论推导,用李雅普诺夫函数分析和验证通用参数学习规则的学习收敛性,揭示参数学习算法朝最小误差方向调整参数的内在因素.最后在单参数学习算法收敛性的分析基础上,提出一种变调整规则的单参数学习算法,加快参数学习速度.从学习收敛性的理论论证和实验结果来看,这种网页分类
其他文献
在局域网中目前多采用DHCP服务器代理上网,运用DHCP服务器动态进行IP地址的分配,虽然解决了IP地址管理中的难题,但随之而出现的各种各样的DHCP故障和安全问题却成为工程师们
在能量受限的传感器网络中,尽量延长网络寿命同时保证服务质量(如感知覆盖和数据完整)是关键的研究问题.节点睡眠调度能有效延长网络寿命.研究数据驱动的睡眠调度机制,利用感知数据