基于综合相似度加权Slope One算法的协同过滤算法

来源 :统计与决策 | 被引量 : 0次 | 上传用户:loyovue0603
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
协同过滤算法是目前应用最为广泛的个性化推荐算法,在已有的研究中对传统协同过滤算法进行数据填充时往往使用中值或平均值等单一数据作为填充值,文章针对该问题提出一种改进的Slope One算法来计算填充值,先通过项目综合相似度筛选出待预测评分项目的近邻用户集S,然后在用户集S上计算项目间的偏差值dev时引入用户综合相似度,从而有效提高了填充值的多样性和可靠性,最后通过基于用户综合相似度的协同过滤算法对目标用户给出推荐.在Movielens1-M数据集上进一步和其他类似算法作五折交叉实验,结果表明,改进的算法不仅能有效缓解推荐算法的数据稀疏性问题,还能提高预测的准确性,使推荐系统有更好的效果.
其他文献
新时代推进中国特色社会主义制度和国家治理体系建设是实现“两个一百年”奋斗目标、应对百年未有之大变局和满足人民对美好生活向往的必然要求.完善“中国之制”、推进“中