【摘 要】
:
For fluorescence molecular tomography(FMT), image quality could be improved by incorporating a sparsity constraint. The L1 norm regularization method has been proven better than the L2 norm, like Tikh
【出 处】
:
Chinese Optics Letters
论文部分内容阅读
For fluorescence molecular tomography(FMT), image quality could be improved by incorporating a sparsity constraint. The L1 norm regularization method has been proven better than the L2 norm, like Tikhonov regularization. However, the Tikhonov method wa
其他文献
社会经济的发展在一定程度上促进网络技术的发展,而且网络技术被广泛应用到各行各业中,促进各行各业的发展。而物联网技术则是在网络技术发展下衍生出来的一种新的技术形式,利用现代技术手段,将物联体系融入网络系统中,实现资源信息共享的共同,还能实现物体和物体之间的网络互连。因此,本文分析物联网环境下计算机网络安全存在的问题,并探究物联网环境下计算机网络安全控制的策略
研究目的评价在高分辨率CT图像中采用DenseNet算法识别COVID-19肺部病灶能力,为临床诊治提供依据。研究方法295例受试者纳入本研究,其中健康受试者149例、COVID-19患者146例;将所有受试者随机分为3组,其中训练集135例(健康受试者69例、COVID-19患者66例),验证集20例(健康受试者10例、COVID-19患者10例),测试集140例(健康受试者70例、COVID-
Semantic segmentation is a fundamental task in image analysis. The issue of semantic segmentation is to extract discriminative features for distinguishing different objects and recognizing hard exampl
With the development of deep neural networks, the demand for a significant amount of annotated training data becomes the performance bottlenecks in many fields of research and applications. Image synt
Great success of scene parsing(also known as, semantic segmentation) has been achieved with the pipeline of fully convolutional networks(FCNs). Nevertheless, there are a lot of segmentation failures c
Dear editor,Object detection has always been the focus and challenge in the field of computer vision, especially the small object detection. With the arrival of deep convolutional networks (Conv Nets
Dear editor,Recently, facial expression recognition (FER) has drawn increasing attention owing to its widespread application in many fields such as human-machine interaction, assistive healthcare, psy
视网膜血管的形态结构信息可以为糖尿病、高血压等疾病提供诊断依据。提出了一种基于多尺度多路径的全卷积神经网络的视网膜血管分割方法。首先,利用空洞卷积代替池化层和上采样操作,在不增加参数的情况下增加感受野,避免了细节信息的丢失;其次,通过使用不同空洞率的空洞卷积实现图像数据的多尺度特征提取,充分学习图像的多尺度特征,避免网络过深,并提升了细小血管的提取能力;同时,利用跳层结构在网络中建立多条信息流通路
Scene text recognition has received increasing attention in the research community. Text in the wild often possesses irregular arrangements, which typically include perspective, curved, and oriented t
针对夜间环境造成的图像对比度下降和增强过程中带来的噪声、过曝和光晕效应等问题,提出了一种基于视觉感受野的夜间彩色图像自适应增强算法。首先将图像转换到HSV空间,鉴于视觉感知的对比度敏感特性,利用中心兴奋区及外周抑制区组成的拮抗式同心圆双高斯差(DOG)感受野模型对图像亮度空间V进行对比度自适应调节,并对模型参数σ1、σ2和局部对比度都进行量化水平为4的均匀量化,局部对比度较高的量化区间采用较小模型