论文部分内容阅读
摘 要:本文在学生对“物流系统仿真”课程理论知识掌握一般的情况下,提炼出关键知识点,并以此为基础对学生进行难易度感知调查,对卷面成绩进行分析,了解各关键知识点的相关情况,调整授课过程中的教学时间安排。
关键词:物流系统仿真;学情分析;教学安排
一、关键知识点提炼
对“物流系统仿真”课程关键知识点进行整理和提炼,得到离散事件系统的基本要素、离散事件系统的分类等共38个关键知识点。
二、学生学情现状分析
1. 知识点难易度感知分析
对学生进行不记名调查,共收集了54位学生的调查数据。将关键知识点的难易度感知分为五个等级,分别用5、4、3、2、1表示。认为此知识点非常难,填数字5;比较难,填数字4;一般,填数字3;比较容易,填數字2;非常容易,填数字1。各知识点平均分值如下:区间估计与置信区间为3.704,正交设计为3.574,终止型仿真的结果分析为3.389,参数估计为3.370,随机变量的相关与回归分析、敏感度分析为3.352,稳态仿真的结果分析为3.296,连续系统和离散事件系统的仿真为3.278,拟合度检验为3.259,参数优化为3.204,单品种库存系统仿真举例、常用分布、事件调动法为3.148,单服务台排队系统的仿真为3.130,仿真钟为3.093,随机数性能测试、活动扫描法为3.056,连续系统和离散事件系统的仿真为3.019,随机变量分布的辨识、仿真结果的瞬态与稳态特征为2.963,随机变量的产生方法、经验分布为2.926,系统、模型与系统仿真、随机变量的比较为2.907,系统仿真的相关技术为2.870,确定性系统与随机系统为2.852,系统仿真的应用为2.815,离散事件仿真模型的组成与构造为2.796,离散事件系统的基本要素为2.778,离散事件系统仿真的基本步骤为2.759,随机事件与概念、随机变量与随机数为2.741,离散事件系统的分类为2.611,随机数发生器为2.556,物流现代化与系统仿真为2.537,系统仿真技术的特点、收集原始数据为2.389,系统仿真的类型为2.333,系统仿真技术的发展历史为2.204。
从整体上看,平均分值均分布在2~4之间,最大值为3.704,最小值为2.204。3~4分区间内有18个知识点,2~3分区间内有20个知识点。说明各关键知识点具有一定的难度,但均在一定范围内。区间估计与置信区间、正交设计、终止型仿真的结果分析等偏数学理论的知识点分值较高,被认为属于较难学习的范畴。其中,区间估计与置信区间、正交设计的平均分值超过了3.5,分别排在第一位和第二位,除此之外,还有16个知识点在3~4分区间,大部分偏数学理论,但也包括少部分如仿真钟等概念型知识点。而2~3分区间中大部分为概念型的理论知识,如仿真结果的瞬态与稳态特征、离散事件系统仿真的基本步骤等,但也包括少数数学方法,如随机变量分布的辨识等。
2. 学生试卷关键知识点得分分析
通过对126位学生的期末成绩进行分析,统计各小题题项得分,并将各小题对应归类至不同的关键知识点,将各关键知识点得分率从高到低排列。
得分率高于90%的有两个关键知识点,分别为物流现代化与系统仿真(96.8%),与其并列的是系统仿真技术的特点。得分率低于60%的有10个关键知识点,分别为正交设计,敏感度分析(58.6%),常用分布(57.5%),区间估计与置信区间(55.5%),随机变量的比较(47.6%),系统仿真的相关技术(46.0%),离散事件系统的基本要素(21.4%),仿真钟(14.3%),事件调动法、活动扫描法(10.3%)。
三、关键知识点时间安排设计
结合关键知识点的难易度分析和试题知识点得分情况,对原有关键知识点的时间安排进行调整。对学生畏难情绪较高的知识点以及得分率较低的知识点安排更多时间。主要变化有:系统仿真的相关技术(原安排时间:45分钟;现安排时间:55分钟),连续系统和离散事件系统的仿真(13.5;15),仿真钟(4.5;10),单服务台排队系统的仿真(13.5;20),随机事件与概念、随机变量与随机数(9;15),常用分布(27;35),随机数性能测试(54;60),随机变量分布的辨识(40.5;45),参数估计(31.5;35),拟合度检验(45;50),随机变量的相关与回归分析(18;25),区间估计与置信区间(18;25),终止型仿真的结果分析(18;25),敏感度分析(27;35)。
参考文献:
[1]邱小平.物流系统仿真[M].北京:中国物资出版社,2012.
[2]张晓萍,等.物流系统仿真[M].北京:清华大学出版社,2008.
[3]李铮,冯智芸,王萌.物流系统仿真课程多元平台建设探讨[J].科技资讯,2017(19):23-25.
注:本文系南昌工程学院教学改革研究课题(课题编号:2014JG038)。
关键词:物流系统仿真;学情分析;教学安排
一、关键知识点提炼
对“物流系统仿真”课程关键知识点进行整理和提炼,得到离散事件系统的基本要素、离散事件系统的分类等共38个关键知识点。
二、学生学情现状分析
1. 知识点难易度感知分析
对学生进行不记名调查,共收集了54位学生的调查数据。将关键知识点的难易度感知分为五个等级,分别用5、4、3、2、1表示。认为此知识点非常难,填数字5;比较难,填数字4;一般,填数字3;比较容易,填數字2;非常容易,填数字1。各知识点平均分值如下:区间估计与置信区间为3.704,正交设计为3.574,终止型仿真的结果分析为3.389,参数估计为3.370,随机变量的相关与回归分析、敏感度分析为3.352,稳态仿真的结果分析为3.296,连续系统和离散事件系统的仿真为3.278,拟合度检验为3.259,参数优化为3.204,单品种库存系统仿真举例、常用分布、事件调动法为3.148,单服务台排队系统的仿真为3.130,仿真钟为3.093,随机数性能测试、活动扫描法为3.056,连续系统和离散事件系统的仿真为3.019,随机变量分布的辨识、仿真结果的瞬态与稳态特征为2.963,随机变量的产生方法、经验分布为2.926,系统、模型与系统仿真、随机变量的比较为2.907,系统仿真的相关技术为2.870,确定性系统与随机系统为2.852,系统仿真的应用为2.815,离散事件仿真模型的组成与构造为2.796,离散事件系统的基本要素为2.778,离散事件系统仿真的基本步骤为2.759,随机事件与概念、随机变量与随机数为2.741,离散事件系统的分类为2.611,随机数发生器为2.556,物流现代化与系统仿真为2.537,系统仿真技术的特点、收集原始数据为2.389,系统仿真的类型为2.333,系统仿真技术的发展历史为2.204。
从整体上看,平均分值均分布在2~4之间,最大值为3.704,最小值为2.204。3~4分区间内有18个知识点,2~3分区间内有20个知识点。说明各关键知识点具有一定的难度,但均在一定范围内。区间估计与置信区间、正交设计、终止型仿真的结果分析等偏数学理论的知识点分值较高,被认为属于较难学习的范畴。其中,区间估计与置信区间、正交设计的平均分值超过了3.5,分别排在第一位和第二位,除此之外,还有16个知识点在3~4分区间,大部分偏数学理论,但也包括少部分如仿真钟等概念型知识点。而2~3分区间中大部分为概念型的理论知识,如仿真结果的瞬态与稳态特征、离散事件系统仿真的基本步骤等,但也包括少数数学方法,如随机变量分布的辨识等。
2. 学生试卷关键知识点得分分析
通过对126位学生的期末成绩进行分析,统计各小题题项得分,并将各小题对应归类至不同的关键知识点,将各关键知识点得分率从高到低排列。
得分率高于90%的有两个关键知识点,分别为物流现代化与系统仿真(96.8%),与其并列的是系统仿真技术的特点。得分率低于60%的有10个关键知识点,分别为正交设计,敏感度分析(58.6%),常用分布(57.5%),区间估计与置信区间(55.5%),随机变量的比较(47.6%),系统仿真的相关技术(46.0%),离散事件系统的基本要素(21.4%),仿真钟(14.3%),事件调动法、活动扫描法(10.3%)。
三、关键知识点时间安排设计
结合关键知识点的难易度分析和试题知识点得分情况,对原有关键知识点的时间安排进行调整。对学生畏难情绪较高的知识点以及得分率较低的知识点安排更多时间。主要变化有:系统仿真的相关技术(原安排时间:45分钟;现安排时间:55分钟),连续系统和离散事件系统的仿真(13.5;15),仿真钟(4.5;10),单服务台排队系统的仿真(13.5;20),随机事件与概念、随机变量与随机数(9;15),常用分布(27;35),随机数性能测试(54;60),随机变量分布的辨识(40.5;45),参数估计(31.5;35),拟合度检验(45;50),随机变量的相关与回归分析(18;25),区间估计与置信区间(18;25),终止型仿真的结果分析(18;25),敏感度分析(27;35)。
参考文献:
[1]邱小平.物流系统仿真[M].北京:中国物资出版社,2012.
[2]张晓萍,等.物流系统仿真[M].北京:清华大学出版社,2008.
[3]李铮,冯智芸,王萌.物流系统仿真课程多元平台建设探讨[J].科技资讯,2017(19):23-25.
注:本文系南昌工程学院教学改革研究课题(课题编号:2014JG038)。