论文部分内容阅读
为了有效解决现有Web文本分类方法普遍存在的分类效果不佳、性能低下等问题,文中基于局部潜在语义分析的理论原理,利用支持向量机分类优势,设计出一种基于文档与类别之间相关度的生成局部区域的算法,即S-LLSA。该算法在奇异值分解过程中引入不同类别信息,分析特征词的局部特征,使用支持向量机分类器计算文本对类别的相关度参数,并应用于局部区域生成过程。通过实验表明,S-LLSA算法有效解决了局部区域如何进行局部奇异值分解问题,有效地提高并优化了Web文本分类效果,更好地表示了Web文本潜在语义空间。