Local regularity properties for 1D mixed nonlinear Schr(o)dinger equations on half-line

来源 :中国数学前沿 | 被引量 : 0次 | 上传用户:jill_bai
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The main purpose of this paper is to consider the initial-boundary value problem for the 1D mixed nonlinear Schr(o)dinger equation ut =iαuxx +βu2(ū)x + γ|u|2ux + i|u|2u on the half-line with inhomogeneous boundary condition.We combine Laplace transform method with restricted norm method to prove the local well-posedness and continuous dependence on initial and boundary data in low regularity Sobolev spaces.Moreover,we show that the nonlinear part of the solution on the half-line is smoother than the initial data.
其他文献
Let S(m,d,k) be the set of k-uniform supertrees with m edges and diameter d,and S1(m,d,k) be the k-uniform supertree obtained from a loose path u1,e1,u2,e2,…,u
We prove that a Finsler manifold with vanishing Berwald scalar curvature has zero E-curvature.As a consequence,Landsberg manifolds with vanishing Berwald scalar