论文部分内容阅读
当源点靠近边界单元时,边界积分方程通常存在几乎奇异积分的计算难题.基于三角形单元,将源点到单元的距离与单元特征长度比值定义为接近度,用于度量边界单元中积分奇异性的程度.将单元上的面积分在局部的极坐标系ρθ下表示,利用一些初等函数的积分公式,获得对变量ρ作单层积分的解析表达式·几乎强奇异和超奇异面积分被转化为沿单元围道上一系列线积分,而Gauss数值积分能够有效计算这些线积分,应用该算法分析三维弹性薄壁结构获得了成功。