论文部分内容阅读
针对Elman神经网络在股价预测中存在网络结构的隐节点个数难以确定和网络训练极易陷入局部解的不足,以未来两天股票最高价作为预测对象,采用改进Elman神经网络结构,以辨识更高阶的动态系统;同时又利用遗传算法优化该神经网络的初始连接权和确定网络隐节点个数,从而解决上述网络在股价预测中的不足,并在遗传进化计算过程中采用保留最佳个体的策略,进行预测建模。结果表明这种模型对股价的预测精度较高,具有一定可行性。