论文部分内容阅读
针对语音信号的实时性和不确定性,提出证据信任度信息熵和动态先验权重的方法,对传统D-S证据理论的基本概率分配函数进行改进;针对情感特征在语音情感识别中对不同的情感状态具有不同的识别效果,提出对语音情感特征进行分类。利用各类情感特征的识别结果,应用改进的D-S证据理论进行决策级数据融合,实现基于多类情感特征的语音情感识别,以达到细粒度的语音情感识别。最后通过算例验证了改进算法的迅速收敛和抗干扰性,对比实验结果证明了分类情感特征语音情感识别方法的有效性和稳定性。