论文部分内容阅读
南图尔盖盆地K油田古生界(Pz)岩性多样、孔隙结构复杂,针对常规岩性解释方法对该储层岩性识别准确度未达到预期效果,严重制约了测井储层解释等问题,提出基于粒子群算法优化支持向量机(PSO-SVM)的岩性识别方法。通过岩心资料分析不同岩性的测井响应特征,建立测井相识别图版。选择对研究区岩性敏感的自然伽马、阵列感应电阻率、声波、中子、密度与光电吸收截面指数等七条测井曲线参数作为输入特征值,以粒子群算法优选合适的支持向量机参数(惩罚因子和核函数参数)对研究区4口取心井进行样本学习,建立基于PSO-SVM的岩