论文部分内容阅读
BACKGROUND: There are two hypotheses for the underlying cause of refractory epilepsy: target and transport. Studies have shown that brain-derived neurotrophic factor (BDNF) is over-expressed in refractory epilepsy. Multidrug resistance 1 (MDR1) gene encodes for P-glycoprotein, the primary ATP-binding cassette transporter in the human body. Some single nucleotide polymorphisms of the MDR1 gene have been associated with refractory epilepsy.OBJECTIVE: To investigate the association between BDNF gene C270T polymorphism and MDR1 T-129C polymorphism with refractory epilepsy in Chinese Han children through the use of polymerase chain reaction (PCR)-restriction fragment length polymorphism analysis.DESIGN, TIME AND SETTING: A case-control, genetic association study was performed at the Central Laboratory, Third Xiangya Hospital of Central South University from June 2005 to November 2007.PARTICIPANTS: A total of 84 cases of unrelated children with epilepsy, including 41 cases of refractory epilepsy and 43 cases of drug-responsive epilepsy, were enrolled. An additional 30 healthy, Chinese Han children, whose ages and gender matched the refractory epilepsy patients, were selected as normal controls.METHODS: Venous blood was collected and genomic DNA was extracted from the blood specimens. C270T polymorphism in BDNF gene and T-129C polymorphism in MDR1 gene were genotyped using PCR-restriction fragment length polymorphism analysis. Association analysis using the F test and Chi-square test was statistically performed between C270T polymorphism in BDNF gene and T-129C polymorphism in MDR1 gene and refractory epilepsy. MAIN OUTCOME MEASURES: The distribution of genotypes and allele frequencies of C270T polymorphism in BDNF gene and T-129C polymorphism in MDR1 gene.RESULTS: The distribution of CC, CT, and TT genotypes, as well as C and T allele frequencies, in the BDNF gene was not significantly different between the refractory epilepsy group, drug-responsive epilepsy group, or the normal control group (P > 0.05). The distribution of TT genotype and T allele frequencies of the MDR1 gene was significantly different in the refractory epilepsy group compared with the drug-responsive epilepsy and normal control groups (P < 0.05). Comparison of haplotype combinations demonstrated that there were no significant differences in combinations of TT+CC, TT+CT, TC+CC, and TC+CT among the three groups (P > 0.05).CONCLUSION: C270T polymorphism of the BDNF gene was not associated with refractory epilepsy in Chinese Han children, but T-129C polymorphism in the MDR1 gene was associated with refractory epilepsy in Chinese Han children. The TT genotype and T allele frequencies could serve as susceptibility loci for refractory epilepsy. Interactions between C270T in BDNF gene and T-129C in MDR1 gene were not observed in refractory epilepsy in Chinese Han children.