【摘 要】
:
为确保现场混装乳化炸药使用安全,通过动态挤压模拟炸药泵送装药过程,利用激光粒度分析、显微镜观察、水溶法硝酸铵析出量测试和粘度测试,对不同转速下制备的现场混装乳化炸药及其基质受多次动态挤压后的稳定性进行了研究。实验结果表明:当制备粒径大于5 μm时,乳胶基质受动态挤压后发生不同程度的析晶失稳,600 r·min-1制备的乳胶基质受压10次后,硝酸铵析出量为受压前的5.14倍,粘度增大43%,油包水结构已经完全破坏;当制备粒径小于5 μm时,乳胶基质抗动态挤压能力提升,1400 r·min-1制备的乳胶基质受
【机 构】
:
安徽理工大学化学工程学院,,安徽淮南232001
论文部分内容阅读
为确保现场混装乳化炸药使用安全,通过动态挤压模拟炸药泵送装药过程,利用激光粒度分析、显微镜观察、水溶法硝酸铵析出量测试和粘度测试,对不同转速下制备的现场混装乳化炸药及其基质受多次动态挤压后的稳定性进行了研究。实验结果表明:当制备粒径大于5 μm时,乳胶基质受动态挤压后发生不同程度的析晶失稳,600 r·min-1制备的乳胶基质受压10次后,硝酸铵析出量为受压前的5.14倍,粘度增大43%,油包水结构已经完全破坏;当制备粒径小于5 μm时,乳胶基质抗动态挤压能力提升,1400 r·min-1制备的乳胶基质受压10次后,粒径增大2.16倍,硝酸铵析出量仅为受压前的2.14倍,粘度增大10%,微观结构保持稳定。动态挤压过程会加速乳胶基质析晶失稳与理化性质的改变,降低乳化炸药性能且不利于进行装填等工序,在生产实践中,需合理控制乳胶基质的制备粒径D≤5 μm。“,”In order to ensure the safety of field mixed emulsion explosive, dynamic extrusion was used to simulate the charging process of explosive. The stability of field mixed emulsion explosive prepared at different rotating speed was studied by laser particle sizer, microscope, water‑soluble ammonium nitrate precipitation test and digital viscometer. The experimental results show that crystallization instability in the emulsion matrix will occur in some extent under dynamic extrusion when the particle size is larger than 5 μm.After 10 times of dynamic extrusion, the amount of ammonium nitrate released from the emulsion matrix is 5.14 times of that before extrusion, the viscosity increases by 43%, and the W/O structure has been completely destroyed.When the particle size is smaller than 5 μm, the dynamic extrusion resistance of emulsion matrix is improved,after 10 times of dynamic extrusion, the particle size of emulsion matrix increased by 2.16 times, the amount of ammonium nitrate released from the emulsion matrix is only 2.14 times of that before compression, the viscosity increased by 10%, and the microstructure remained stable.The dynamic extrusion process will accelerate the crystallization instability of matrix, change the physicochemical properties, reduce the performance of emulsion explosive, and is not conducive to the loading process. In production practice, it is necessary to reasonably control the particle size D≤5 μm.
其他文献
尺寸小、均匀单分散的MnFe2O4在生物材料、隐身技术、磁流体和锂电池等领域具有巨大的应用潜力。文章采用多元醇混合水热法, 以氯化锰(MnCl2·6H2O)、硝酸铁[Fe(NO)3·6H2O]作为原料, 以氢氧化钠(NaOH)为矿化剂, TERG作为分散剂, 制备出了均匀单分散的MnFe2O4纳米磁性粉体。通过改变反应时间, 实现了纳米颗粒的尺寸可控制备。采用XRD、TEM和VSM等手段对制备的纳米磁性材料进行表征。实验结果表明, TREG对MnFe2O4纳米颗粒起到了分散作用, 随着MnFe2O4纳米磁
分析了两个矩形光栅迭合产生的莫尔条纹的光强分布特性,通过选择适当的光栅参数,可得到一个近似的正弦分划板,并把它用于三维面形测量中.实验结果表明,这种方法简单,易于自动处理,有广泛的实用价值.
在快速压缩机实验平台中利用高速成像及动态压力采集手段研究了FOX‑7/NC/NG快速热刺激下的自着火行为。结果表明样品在快速压缩机上止点热力条件为3.0 MPa, 598.1 K,环境平均热加载速率约为1.2×104 K·s-1时,未发生自着火;保持压力不变,提高温度至913.1 K,平均热加载速率升高至2.5×104 K·s-1时,样品发生自着火。对样品在3.0 MPa,913 K下的自着火过程进行多次重复实验,发现其着火延迟时间(IDTI)误差小于20%,燃烧持续期误差小于5%;FOX‑7/NC/NG
采用溶剂挥发法制备获得1,3,5‑三硝基苯/1,4‑二硝基咪唑(TNB/1,4‑DNI)共晶炸药,通过单晶X射线衍射表征共晶结构,其晶体属于正交晶系,P212121空间群,晶胞参数:a=6.4068(5) Å, b=10.4569(8) Å, c=20.7164(17) Å, α=β=γ=90°, ρ=1.776 g·cm-3, Z=4。采用差示扫描量热法(DSC)分析其热性能,结果表明其熔点为84.4 ℃,明显低于单组份TNB(123.5 ℃)和1,4‑DNI(91 ℃)的熔点,且TNB/1,4‑DNI
针对俯仰角速度对弹丸侵彻多层靶弹道的影响问题,在分析大量文献数据与数值模拟数据基础上,采用LS‑DYNA有限元软件,开展了考虑/不考虑俯仰角速度条件下弹丸侵彻多层靶数值模拟,对比了着靶时间、着靶速度、着靶点偏移、攻角、着角、引信过载等数据,结果显示考虑俯仰角速度下的数值模拟结果与试验更吻合。基于此,模拟分析了不同大小、方向俯仰角速度对弹丸侵彻多层钢筋混凝土靶弹道的影响,结果表明同等大小情况正向俯仰角速度比负向俯仰角速度对弹道影响更大,且为确保弹丸在目标建筑物内爆轰,其俯仰角速度大小、方向须控制在-627°
为了研究奥克托今(HMX)晶体的激光辐照效应,采用多种技术手段表征了HMX晶体在360 nm紫外激光下的微观结构演化。光学显微镜下观察了激光辐照下HMX晶体内部的缺陷积累直至细化开裂的过程。通过对原位拉曼光谱分析发现HMX吸收紫外光子后会激发HMX分子,引起环的振动。采用原位广角X射线散射(WAXS)、单晶衍射(SCXRD)和原位小角X射线散射(SAXS)技术研究了HMX在紫外激光辐照过程中的晶体变化及缺陷演化,发现HMX不会发生相变但会细化并产生新的缺陷。原位SAXS结果表明,激光辐照1170 min后
为了获得新型锆基非晶活性材料在动态加载条件下的力学性能及本构关系,采用压力渗透铸造法制备得到锆基非晶活性材料样品,借助分离式霍普金森压杆实验测量系统对其进行了不同应变率加载条件下的动态压缩实验,获得了应变率在300~1600 s-1范围内材料的应力‑应变曲线,利用高速摄影观察记录了不同应变率条件下试件的破碎以及释能过程。结果表明:锆基非晶活性材料性能表现为脆性材料特征,应力‑应变曲线不存在屈服阶段,且当应变率由947 s-1上升至1587 s-1时,材料抗压强度由2.71 GPa上升至2.78 GPa,增
高张力键或高能化学键是构成颠覆性含能材料的重要基元,但由于难形成、易断裂,它们的构筑一直是化学与含能材料领域中的一个难题。利用分子笼独特的内部空间“协助”构筑此类化学键为相关研究提供了一条可行的路线,并且已经付诸实践。本文归纳了分子笼的“限域效应”、弱相互作用及电子传输等特性,探讨了其在阻止氧气氧化P4等高张力材料、稳定芳基五唑等高活性物质、富集NaN3等反应物以加速反应、改变反应路径等过程中的作用,梳理了分子笼在这些过程中扮演的“防火墙”、“稳定剂”、“加速器”、“搬道工”等角色,为分子笼在TdN4等新
针对三氨基三硝基苯(TATB)基高聚物黏结炸药PBX‑9502的热循环致不可逆变形机理问题,在考虑TATB晶粒的各向异性、黏结剂以及晶粒/黏结剂界面局域热力学性能的差异性基础上,采用三相微结构模型和扩展有限元法(XFEM),建立了计算模型,并对不可逆变形现象进行了数值模拟与分析。结果表明:由于PBX‑9502中TATB晶粒的严重各向异性,以及TATB晶粒与黏结剂热力学性能的差异,在热循环加载过程中,PBX‑9502试件内部产生了变形不协调与应力集中,致使黏结剂破坏和晶粒/黏结剂的界面脱黏等内部损伤,进而导