论文部分内容阅读
提出广义多分辨似然比(generalized multiresolution likelihood ratio,简称GMLR)的概念,给出其Bayes准则下的假设检验和判别准则。GMLR能融合待判别信号的多个特征量,增大不同信号的区分度,所以能更精确地对信号进行判别分析。在SAR(synthetic aperture radar)图像分割的应用背景中,首先用弃除图像冗余信息,减小计算量的Bootstrap样本得到GMLR的原假设和备择假设参数的极大似然估计,然后检测GMLR的分割阈值,最后对森林和草