论文部分内容阅读
1引言与结论设整数M≥2和N≥1.定义则由等式所确定的实系数三角多项式_N~MH(ξ)称为多进Daubechies型滤波器.在M=2时它最先由Daubechies引入,Heller及Bi等给出了一般情形M≥2.若三角多项式H(ξ)有因子((1-e~(iMξ))/(1-e~(iξ))~时即存在三角多项式R(ξ)使得H(ξ)=((1-e~(iMξ))/(1-e~(iξ))~NR(ξ),称H(ξ)有N阶消失矩.显然滤波器_N~MH(ξ)是方程
1 INTRODUCTION AND CONCLUSION Let the integers M≥2 and N≥1 define the real coefficient trigonometric polynomial _N ~ MH (ξ) which is defined by the equation as the multi-input Daubechies type filter. When M = 2, it first Which is introduced by Daubechies, Heller and Bi give the general case M≥2. If the trigonometric polynomial H (ξ) has a factor of (1-e ~ (iMξ)) / (1-e ~ (iξ)) ~ The trigonometric polynomial R (ξ) makes H (ξ) = ((1-e ~ (iMξ)) / (1-e ~ (iξ)) ~ NR (ξ) Filter_N ~ MH (ξ) is an equation