论文部分内容阅读
一、教学难点的含义
什么是教学难点?有学者认为,教学的难点一般是指教师较难讲清楚、学生较难理解或容易产生错误的知识内容。也有的学者认为,数学中的难点是指学生不易理解的知识,或不易掌握的技能技巧。按笔者的理解,教学难点可以从基础知识和基本技能两方面来确定,也就是学生不容易理解的概念、原理、定律法则、公式等知识可以认为是难点,对于那些应用基础知识去解决某些实际问题而感到困难,或是通过反复训练学生难以内化的知识也可以认为是难点。
需要说明的是,难点不一定是重点,重点也不一定是难点,而有些内容既是难点又是重点。难点要根据学生的实际水平来定,同样一个问题,在这个班级是难点,而在另一个班级则不一定是难点。
二、教学难点的产生
现代认知发展理论认为,学生认知结构的发展是在认识其新知识的过程中,伴着同化和顺应,使原有的认知结构不断再构的过程。
从认知发展理论来分析,在教学时,如果所学习的内容能通过学生的思考把外在的信息纳入到已有的认知结构中,从而丰富和加强已有的思维倾向和行为模式,这样的学习内容学生容易理解。如果所学的内容与学生已有的认知结构与新的信息产生冲突,引起原有认知结构的调整,需要建立新的认知结构,这种通过顺应而建立新的认知结构的知识则比较困难。因为认知结构本身也有一种定式,这种定式的消极作用会阻碍认知的飞跃,从而造成学习新知识的困难,形成教学难点。因此,教学难点在一定程度上决定于作为认识客体的教材内容,然而它还决定于作为认识主体的学生和指导主体认识客体而在教学中起主导作用的教师,即决定于教师、学生的素质和能力。
当然,在同一个内容的学习过程中,同化和顺应往往同时进行,难以截然分开。由于学生个体数学认知结构的差异,教学难点的形成也必然存在差异,在实际操作时,要根据学生的实际水平来灵活确定教学难点。
三、教学难点的突破
1、讲解法。就是对学生不容易理解的知识,教师有必要进行有意义的“讲”。要特别注意的是,这里的“讲”不是“灌输”,而是“启发讲解”,使学生在比较短的时间内理解知识。这是我们常用的一种方法。
例如,苏教版课改实验教材四年级上册“找规律(植树问题)”,学生比较难理解的是植树的棵数与间隔之间的关系。为此,我运用启发讲解的方法进行教学,效果比较好。
师:(多媒体出示例题中的兔子和蘑菇图)我们一起来看这幅图,图中的兔子和蘑菇是怎样排列的?
生:按一只兔子接着一个蘑菇的规律排列。
师:你说得真好!这是一种间隔排列问题,第一是兔子,最后也是兔子,像这样兔子排在开始和最后,我们把兔子看作“两端的物体”,蘑菇排在中间,我们把蘑菇看作“中间的物体”。
师:谁来说说兔子有几只?蘑菇有几个?
生:兔子有8只,蘑菇有7个。
师:(出示篱笆图)我们再来看这里的篱笆图,仔细观察,这幅图中两端的物体是什么?中间的物体是什么?
生:两端的物体是木桩,中间的物体是篱笆。
师:数一数,木桩和篱笆各是多少。
生:木桩有13根,篱笆有12块。
师:(出示手帕图)我们再来看看这幅图中两端的物体和中间的物体分别是什么?
生:兩端的物体是夹子,中间的物体是手帕。
师:夹子和手帕各有多少?
生:夹子有10个,手帕有9块。
师:请同学们将刚才观察的三幅图中两端的物体和中间的物体的个数分别填在下面的表格中。
(教师出示下面的表格,表格中的数让学生填写。)
师:请大家仔细观察表格,从中你能发现什么规律吗?
生:我发现两端的物体比中间的物体多1。
师:反过来,还可以怎么说?
生:中间的物体比两端的物体少1。
在教师的启发引导下,学生找到了规律,教学难点也由此突破。
2、演示实验法。即运用演示实验的方法来攻破教学难点。演示实验,可以让学生从动态的操作过程中观察思考,从而达到理解知识的目的。
例如:“在一只底面半径是30厘米的圆柱形水桶中,有一段半径是10厘米的圆柱形钢材完全浸没在水中,当钢材从水中取出时,桶里的水面下降5厘米。这段钢材有多长?”这道题的教学难点是让学生理解钢材的体积实际上就是水下降的体积。如何在“钢材的体积”与“水下降的体积”这两者之间建立起联系,对学生来说是一个比较困难的问题。为此,我在教学时引导学生观察实验:将一段圆柱形钢材放进一个盛水的圆柱形烧杯里,使圆柱形钢材完全浸没在水中,让学生观察演示过程,教师将钢材从烧杯中取出,让学生观察水面的变化过程,并思考下面的问题:在没有拿出钢材时,水面在什么位置?当拿出钢材后,水面发生了怎样的变化?为什么会有这样的变化?钢材的体积与水下降的体积有怎样的关系?
学生通过观察思考,发现钢材取出后,烧杯里的水下降了的那一部分是一个小圆柱,而这个小圆柱的体积与圆柱形钢材的体积相等。这样学生顺利解决了圆柱形钢材的体积问题,进而迅速求出了钢材的长,问题迎刃而解。
3、运用比喻法。有些基础知识,学生虽然能记住,也能运用已学的知识解决一些简单的问题,但是让他们说出其中的道理,有时往往表述不清楚,这说明学生还是没有真正理解。为此,我在教学时常常运用比喻的方法帮助学生理解知识。
4、变换叙述法。即运用变换叙述形式的方法来降低难度,攻破难点。我们经常说“思维定式”,确实,学生有时会有一种固化的思维,对于某些“标准形式”的问题,都能顺利解决,而对稍有变化的材料则出现困难。当遇到这样的情况时,教师如果能及时变换叙述形式,让学生在比较中感悟,他们就会从中得到启示,从而解决问题。
例如:“一项工程,由甲工程队修建,需要20天完成,由乙工程队修建,需要30天完成。两队先合修若干天,剩下的工程甲队又用了5天完成了全工程。甲乙两队合修了多少天?”学生对题中的表述比较难理解,给解题思路带来了干扰。为攻破难点,可将此题的叙述形式变为:“一项工程,由甲工程队修建,需要20天完成,由乙工程队修建,需要30天完成。现在由甲工程队先修5天,剩下的由甲乙两队合修,甲乙两队合修了多少天?”
显然,尽管这两道题的表述形式不一样,但是实质是一样的。因此,问题很快得到解决:
设数计算法。即运用设数举例的方法,通过计算来解决问题。有些题,看上去似乎缺少条件,从而给解决问题带来了难度,这时如果运用设数的方法,便可以很快找到解决问题的办法。
什么是教学难点?有学者认为,教学的难点一般是指教师较难讲清楚、学生较难理解或容易产生错误的知识内容。也有的学者认为,数学中的难点是指学生不易理解的知识,或不易掌握的技能技巧。按笔者的理解,教学难点可以从基础知识和基本技能两方面来确定,也就是学生不容易理解的概念、原理、定律法则、公式等知识可以认为是难点,对于那些应用基础知识去解决某些实际问题而感到困难,或是通过反复训练学生难以内化的知识也可以认为是难点。
需要说明的是,难点不一定是重点,重点也不一定是难点,而有些内容既是难点又是重点。难点要根据学生的实际水平来定,同样一个问题,在这个班级是难点,而在另一个班级则不一定是难点。
二、教学难点的产生
现代认知发展理论认为,学生认知结构的发展是在认识其新知识的过程中,伴着同化和顺应,使原有的认知结构不断再构的过程。
从认知发展理论来分析,在教学时,如果所学习的内容能通过学生的思考把外在的信息纳入到已有的认知结构中,从而丰富和加强已有的思维倾向和行为模式,这样的学习内容学生容易理解。如果所学的内容与学生已有的认知结构与新的信息产生冲突,引起原有认知结构的调整,需要建立新的认知结构,这种通过顺应而建立新的认知结构的知识则比较困难。因为认知结构本身也有一种定式,这种定式的消极作用会阻碍认知的飞跃,从而造成学习新知识的困难,形成教学难点。因此,教学难点在一定程度上决定于作为认识客体的教材内容,然而它还决定于作为认识主体的学生和指导主体认识客体而在教学中起主导作用的教师,即决定于教师、学生的素质和能力。
当然,在同一个内容的学习过程中,同化和顺应往往同时进行,难以截然分开。由于学生个体数学认知结构的差异,教学难点的形成也必然存在差异,在实际操作时,要根据学生的实际水平来灵活确定教学难点。
三、教学难点的突破
1、讲解法。就是对学生不容易理解的知识,教师有必要进行有意义的“讲”。要特别注意的是,这里的“讲”不是“灌输”,而是“启发讲解”,使学生在比较短的时间内理解知识。这是我们常用的一种方法。
例如,苏教版课改实验教材四年级上册“找规律(植树问题)”,学生比较难理解的是植树的棵数与间隔之间的关系。为此,我运用启发讲解的方法进行教学,效果比较好。
师:(多媒体出示例题中的兔子和蘑菇图)我们一起来看这幅图,图中的兔子和蘑菇是怎样排列的?
生:按一只兔子接着一个蘑菇的规律排列。
师:你说得真好!这是一种间隔排列问题,第一是兔子,最后也是兔子,像这样兔子排在开始和最后,我们把兔子看作“两端的物体”,蘑菇排在中间,我们把蘑菇看作“中间的物体”。
师:谁来说说兔子有几只?蘑菇有几个?
生:兔子有8只,蘑菇有7个。
师:(出示篱笆图)我们再来看这里的篱笆图,仔细观察,这幅图中两端的物体是什么?中间的物体是什么?
生:两端的物体是木桩,中间的物体是篱笆。
师:数一数,木桩和篱笆各是多少。
生:木桩有13根,篱笆有12块。
师:(出示手帕图)我们再来看看这幅图中两端的物体和中间的物体分别是什么?
生:兩端的物体是夹子,中间的物体是手帕。
师:夹子和手帕各有多少?
生:夹子有10个,手帕有9块。
师:请同学们将刚才观察的三幅图中两端的物体和中间的物体的个数分别填在下面的表格中。
(教师出示下面的表格,表格中的数让学生填写。)
师:请大家仔细观察表格,从中你能发现什么规律吗?
生:我发现两端的物体比中间的物体多1。
师:反过来,还可以怎么说?
生:中间的物体比两端的物体少1。
在教师的启发引导下,学生找到了规律,教学难点也由此突破。
2、演示实验法。即运用演示实验的方法来攻破教学难点。演示实验,可以让学生从动态的操作过程中观察思考,从而达到理解知识的目的。
例如:“在一只底面半径是30厘米的圆柱形水桶中,有一段半径是10厘米的圆柱形钢材完全浸没在水中,当钢材从水中取出时,桶里的水面下降5厘米。这段钢材有多长?”这道题的教学难点是让学生理解钢材的体积实际上就是水下降的体积。如何在“钢材的体积”与“水下降的体积”这两者之间建立起联系,对学生来说是一个比较困难的问题。为此,我在教学时引导学生观察实验:将一段圆柱形钢材放进一个盛水的圆柱形烧杯里,使圆柱形钢材完全浸没在水中,让学生观察演示过程,教师将钢材从烧杯中取出,让学生观察水面的变化过程,并思考下面的问题:在没有拿出钢材时,水面在什么位置?当拿出钢材后,水面发生了怎样的变化?为什么会有这样的变化?钢材的体积与水下降的体积有怎样的关系?
学生通过观察思考,发现钢材取出后,烧杯里的水下降了的那一部分是一个小圆柱,而这个小圆柱的体积与圆柱形钢材的体积相等。这样学生顺利解决了圆柱形钢材的体积问题,进而迅速求出了钢材的长,问题迎刃而解。
3、运用比喻法。有些基础知识,学生虽然能记住,也能运用已学的知识解决一些简单的问题,但是让他们说出其中的道理,有时往往表述不清楚,这说明学生还是没有真正理解。为此,我在教学时常常运用比喻的方法帮助学生理解知识。
4、变换叙述法。即运用变换叙述形式的方法来降低难度,攻破难点。我们经常说“思维定式”,确实,学生有时会有一种固化的思维,对于某些“标准形式”的问题,都能顺利解决,而对稍有变化的材料则出现困难。当遇到这样的情况时,教师如果能及时变换叙述形式,让学生在比较中感悟,他们就会从中得到启示,从而解决问题。
例如:“一项工程,由甲工程队修建,需要20天完成,由乙工程队修建,需要30天完成。两队先合修若干天,剩下的工程甲队又用了5天完成了全工程。甲乙两队合修了多少天?”学生对题中的表述比较难理解,给解题思路带来了干扰。为攻破难点,可将此题的叙述形式变为:“一项工程,由甲工程队修建,需要20天完成,由乙工程队修建,需要30天完成。现在由甲工程队先修5天,剩下的由甲乙两队合修,甲乙两队合修了多少天?”
显然,尽管这两道题的表述形式不一样,但是实质是一样的。因此,问题很快得到解决:
设数计算法。即运用设数举例的方法,通过计算来解决问题。有些题,看上去似乎缺少条件,从而给解决问题带来了难度,这时如果运用设数的方法,便可以很快找到解决问题的办法。