论文部分内容阅读
数学研究的主要对象是空间形式和数量关系。数与形是数学的两大支柱,它们是对立的,也是统一的。数形结合思想,就是通过数与形之间的对应和转化来解决数学问题,它包含以形助数和以数解形两个方面。利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长,是一种基本的数学思想。忽视数与形的任何一方面,都会使数学变得残缺
The main object of mathematical research is the relationship between spatial form and quantity. Number and form are the two pillars of mathematics, they are opposed, but also unified. The idea of combining figures with numbers is to solve mathematical problems through the correspondence and transformation between numbers and forms. It consists of two aspects: form aids and numbers. It can be used to simplify complex issues, abstract the specific issues, it combines the number of rigorous and intuitive shape of the long, is a basic mathematical thinking. Ignoring the number and shape of any one, will make mathematics become incomplete