论文部分内容阅读
针对传统离散引力搜索算法(GSA)容易陷入局部最小解的问题,提出了一种引力搜索和分布估计的混合离散算法GSEDA。通过有效地利用个体在引力搜索的历史统计信息,结合分布估计建立的概率分布模型,生成新的具有全局统计意义的优良解,继而更新搜索群体,使算法搜索更加平衡了空间的开发和探索能力,从而使得算法具有更强的跳出局部最优解的能力。仿真实验结果表明提出的新算法比传统算法具有更好的优化性能和鲁棒性。