论文部分内容阅读
差异性和平均精度是提高分类器集成性能的两个重要指标。增加差异性势必会降低平均精度,增大平均精度一定会减小差异性。故在差异性和平均精度之间存在一个平衡状态,使得集成性能最优。为了寻找该平衡状态,该文提出融合改进二元萤火虫算法和互补性测度的集成剪枝方法。首先,采用bootstrap抽样方法独立训练出多个基分类器,构建原始基分类器池。其次,采用互补性测度对原始基分类器池进行预剪枝。接着,通过改进萤火虫的移动方式和搜索过程,引入重新初始化机制和跳跃行为,提出改进二元萤火虫算法。最后,采用改进二元萤火虫算法对