论文部分内容阅读
衡量用户的相似性是协同过滤算法的核心内容,用户间相似性的准确率对个性化推荐的结果会有显著影响。通过对用户-项目评分记录的分析,在比较pearson和jaccard相似性的基础上对相似性度量方法进行改进,并将该改进方法应用于MovieLens站点提供的数据集进行实证分析。实证研究表明,改进后的算法可以提高个性化推荐的准确性,并在一定程度上克服数据稀疏性对推荐质量的影响。