论文部分内容阅读
Effect of Zr addition on microstructure, magnetic properties and thermal stability of Nd_(12.3)Fe_(81.7)B_(6.0) (x=0-3.0) ribbons melt-spun and annealed was investigated. Magnetic measurement using vibrating sample magnetometer (VSM) revealed that Zr addition was significantly effective in improving the magnetic properties at room temperature. The intrinsic coercivity Hci of the optimally processed rib-boris increased monotonically with increasing Zr content, from 751.7 kA/m for x=0 to 1005.3 kA/m for x=3.0. Unlike the coercivity, the re-manence polarization Jr increased first with Zr addition, from 0.898 T up to 1.041 T at x=1.5, and then decreased with further Zr addition.The maximum energy product (BH)max behaved similarly, increasing from 103.1 KJ/m~3 to a maximum of 175.2 kJ/m~3 at x=1.5. Microstruc-ture studies using atomic force microscopy (AFM) and transmission electron microscopy (TEM) had shown a significant microstructttre re-finement with Zr addition. The absolute values of temperature coefficients of induction and coercivity were significantly increased with in-creasing Zr content, indicating that Zr was detrimental to thermal stability of the melt-spun Nd2Fe14B-type material.