论文部分内容阅读
在运动目标的实时检测中常用的方法是背景图像差分法,但因其缺乏背景图像随监视场景光照变化而及时更新的合理方法,限制了本方法的适应性.对此,本文首先提出了一种基于光流场等技术的自适应背景逼近更新方法,并根据彩色差值模型得到差分图像;然后引入Gauss模型实现运动目标的自适应阈值分割.实验结果表明:本文提出的背景更新方法可随着光照条件的变化实时、准确地更新背景图像,在此基础上提出的基于Gauss模型的自适应阈值分割方法可以实现运动目标的完整分割,这为运动目标的后续识别与理解奠定了基础.