论文部分内容阅读
命名实体识别(NER)是自然语言处理的核心应用任务之一。传统和深度命名实体识别方法严重依赖于大量具有相同分布的标注训练数据,模型可移植性差。然而在实际应用中数据往往都是小数据、个性化数据,收集足够的训练数据是非常困难的。在命名实体识别中引入迁移学习,利用源域数据和模型完成目标域任务模型构建,提高目标领域的标注数据量和降低目标域模型对标注数据数量的需求,在处理资源匮乏命名实体识别任务上,具有非常好的效果。首先对命名实体识别方法和难点以及迁移学习方法进行概述;然后对近些年应用于命名实体识别的迁移学习方法,包括