论文部分内容阅读
为提高图像在数据集中的检索准确度,设计了基于加权距离与多元极谐变换的图像检索算法。在查询图像的色调-饱和度-亮度(HSV)空间内,提取其颜色特征;并引入贝塞尔K分布与非下采样Shearlet变换(NSST)方法得到查询图像的纹理特征,改善其对模糊与亮度变换等操作的稳健性;借助四元极谐变换(QPHT)机制,将图像的QPHT模系数视为形状特征,提高对噪声与几何变换的鲁棒性。通过融合这3种特征,分别计算查询图像与数据库图像之间对应的特征距离,并赋予三者对应的权重,以测量两幅图像之间的相似度,从而准确输出检