论文部分内容阅读
局部保持投影(LPP)是一种能描述数据实际分布的流形学习算法,可以有效地捕获数据的局部信息。针对高精度SAR变形目标识别问题,文中提出一种结合L1图模型和LPP的SAR变形目标识别算法。考虑到稀疏描述具有判别力且对噪声具有鲁棒性的优点,构建L1图模型捕获样本之间的局部结构。此外,还采用一种正则化方法有效地解决了LPP算法中存在的矩阵奇异性问题。实测的MSTAR数据验证了所提算法的有效性。