论文部分内容阅读
课堂导入是指在讲解新知或数学教学活动开始之时,教师有意识、有目的的引导学生进行数学学习的一种方式,是课堂教学的启始环节,也是课堂教学中一个极其重要的环节。现结合自己初中数学教学工作的实践,对几种有效的导入方法谈谈粗浅的认识。
一、巧设悬疑法
悬念,即暂时悬而未决的问题,能够引起学生对课堂教学的兴趣,使学生产生刨根问底的急切心情,在探究的心理状态下接受教师发出的信息。上课伊始,可根据所教内容的性质及教学目标,把所要讲授的问题设为悬念,把学生的注意力引导到教学目标上来。
例如初一数学“用字母表示数”一课,我先组织猜年龄的游戏:“同学们,老师能猜中你们中每一个人的年龄。”学生们异口同声地说:“我不信!”“那就试试看,只要你们把自己的年龄除以2再减去4,把计算后的结果告诉我,老师就能猜出你们的年龄是多少。”一位同学很快说出一个数字3,我马上猜出这位同学的年龄是14岁,这位同学马上说:“老师猜得对!”另一位学生报上一个数字2.5,我脱口而出:“是13岁!”这时同学们议论开了,“老师是怎么猜出来的呢?”接着让同学们相互试着猜,很快他们找到了“诀窍”。“原来如此,只要把这个数字加上4后,再乘以2便是所猜的年龄!”当学生的兴趣正浓时,我适时地进行点拨:“你们每个人的年龄,可以用一个字母a来表示,那么我猜第一个同学的年龄问题,可写成这样一个等式:a÷2-4=3,解这个简易方程得 a=14。”进而指出:“用字母表示数有时可以给我们带来方便,这一节课我们就来学习用字母表示数。”
二、直观生动法
平时我们教学中的图片、插图,大部分离学生比较遥远或者比较陌生。如果偶尔碰到学生身边的材料,学生会有一种亲热感,学习积极性会大增。因而我在教学《有理数的混合运算》这一课时,先出示我们学校的大花坛图,学生一看是自己的学校,感到特别好奇,于是我趁机提出问题:我们的学校的大花坛中间是一个圆形,它的半径为3米,中间雕塑的底面是边长为1.2米的正方形,看看我们班谁最能干?能用算式表示这花坛的实际种花面积?这样一来,学生热情高涨,马上凭自己的经验列出算式。然而我紧接着问:这个算式有哪几种运算?应怎样计算?从而自然地引出课题:今天我们来学习——有理数混合运算。
三、创设情境法
从学生所熟悉的生活情境出发,提出有关的数学问题,以激发学生的学习兴趣,使学生初步感受数学与日常生活的密切联系,充分体现了“数学源于生活,又用于生活”的理念。
例如预备教学“等可能事件”一课,基于预备学生的心理特征,我们的课堂教学要创设生动的数学情境,抓住学生的好奇心。本课由中央气象台今日天气预报:“明天降雨的概率为80%…”。明天会下雨吗?这一问题创设情境,然后从多个生活实例中让学生初步体验等可能事件,从而引出新课内容。
我们还可以借助现代化媒体的运用来创设情景,引导学生想象上课内容的生活背景也是一种很好的课的导入方法。曾经听过一节课“直线与圆的位置关系”,至今记忆犹新。上这节课的时候,老师以“同学们看过海上日出吗?”引入新课,利用多媒体课件放映日出的全过程并把太阳抽象成一个圆,海平面抽象成一条直线,进而让学生讨论圆与直线有几种位置关系?再用几何画版放映出圆与直线的位置关系的变化过程,最后归纳出圆与直线的相切、相交、相离的三种相对位置关系。
这样从实际生活和情景中引入新知,符合探求知识的规律,这样安排一下就吸引住了学生的注意力,学生亲身经历了数学问题的产生过程,感受到数学知识与生活的密切联系和无限趣味,同时也可激发了学生的学习兴趣。
四、实践尝试法
人的认知过程是一个实践和认识螺旋上升的过程。苏霍姆林斯基说:“应让学生通过实践去证明一个解释或推翻另一个解释。”在教学中放手让学生通过自己操作、实验去发现规律,主动认识。使抽象的数学内容具体化、形象化,这样印象会更深,掌握知识会更牢。心理学的研究也表明,让学生从多种不同的感觉渠道同时往大脑输送相关的信息,有利于对相应的数学理论的认知和掌握。
例如,在讲三角形内角和为180度时,可让学生将三角形的三个内角剪下拼在一起,在实践中总结出内角和等于180度的结论,使学生享受到发现真理的快乐。这种导入新课的好处在于培养学生动手动脑的习惯,克服懒惰思想,充分调动学生多种感官参与实践活动,有利于诱发学习数学的浓厚兴趣,让他们自己发现问题,回答和解决他们自己的问题,使他们成为知识的发现者,从而培养他们的创造性思维能力。
五、类比归结法
类比归结导入是通过比较两个或两类数学对象的共同属性来引入新课的方法。由于初中数学内容具有较强的系统性,前后知识衔接紧密,所以由类比导入新课在初中数学教学中最为常见。例如,分式与分数在表达形式、基本性质、运算法则等方面都非常相似, 如果在教学分式时, 引导学生将分式与分数进行类比, 则关于分式的教学将会更加自然顺利。又如,讲解不等式的解法时可用方程的解法类比,这样既能使学生抓住共同点,又能使学生认清不同点。采用这种方法导入新课,是培养学生合情推理的重要手段。教师施展自己的才能挖掘教材中可作类比的内容来导入新课,必然会使学生从中学到运用类比的思维方法去猜测和发现新问题及解决问题的方法,并且尝到由此带来的乐趣,提高学习的积极性。
当然,教无定法,课堂导入的方法是也应是多种多样的。导入方法在运用时要因人而宜,因教学内容而宜。不是每一节课的内容都有十分巧妙的导入,所以不必每一节课都要绞尽脑汁去设计,有时简单的温故导入法、直接导入法等也会起到很好的效果。无论用哪种方式导入,必须使问题情境结构、数学知识结构和学生的认识结构三者和谐的统一,从而才能真正提高课堂导入的实效性。
一、巧设悬疑法
悬念,即暂时悬而未决的问题,能够引起学生对课堂教学的兴趣,使学生产生刨根问底的急切心情,在探究的心理状态下接受教师发出的信息。上课伊始,可根据所教内容的性质及教学目标,把所要讲授的问题设为悬念,把学生的注意力引导到教学目标上来。
例如初一数学“用字母表示数”一课,我先组织猜年龄的游戏:“同学们,老师能猜中你们中每一个人的年龄。”学生们异口同声地说:“我不信!”“那就试试看,只要你们把自己的年龄除以2再减去4,把计算后的结果告诉我,老师就能猜出你们的年龄是多少。”一位同学很快说出一个数字3,我马上猜出这位同学的年龄是14岁,这位同学马上说:“老师猜得对!”另一位学生报上一个数字2.5,我脱口而出:“是13岁!”这时同学们议论开了,“老师是怎么猜出来的呢?”接着让同学们相互试着猜,很快他们找到了“诀窍”。“原来如此,只要把这个数字加上4后,再乘以2便是所猜的年龄!”当学生的兴趣正浓时,我适时地进行点拨:“你们每个人的年龄,可以用一个字母a来表示,那么我猜第一个同学的年龄问题,可写成这样一个等式:a÷2-4=3,解这个简易方程得 a=14。”进而指出:“用字母表示数有时可以给我们带来方便,这一节课我们就来学习用字母表示数。”
二、直观生动法
平时我们教学中的图片、插图,大部分离学生比较遥远或者比较陌生。如果偶尔碰到学生身边的材料,学生会有一种亲热感,学习积极性会大增。因而我在教学《有理数的混合运算》这一课时,先出示我们学校的大花坛图,学生一看是自己的学校,感到特别好奇,于是我趁机提出问题:我们的学校的大花坛中间是一个圆形,它的半径为3米,中间雕塑的底面是边长为1.2米的正方形,看看我们班谁最能干?能用算式表示这花坛的实际种花面积?这样一来,学生热情高涨,马上凭自己的经验列出算式。然而我紧接着问:这个算式有哪几种运算?应怎样计算?从而自然地引出课题:今天我们来学习——有理数混合运算。
三、创设情境法
从学生所熟悉的生活情境出发,提出有关的数学问题,以激发学生的学习兴趣,使学生初步感受数学与日常生活的密切联系,充分体现了“数学源于生活,又用于生活”的理念。
例如预备教学“等可能事件”一课,基于预备学生的心理特征,我们的课堂教学要创设生动的数学情境,抓住学生的好奇心。本课由中央气象台今日天气预报:“明天降雨的概率为80%…”。明天会下雨吗?这一问题创设情境,然后从多个生活实例中让学生初步体验等可能事件,从而引出新课内容。
我们还可以借助现代化媒体的运用来创设情景,引导学生想象上课内容的生活背景也是一种很好的课的导入方法。曾经听过一节课“直线与圆的位置关系”,至今记忆犹新。上这节课的时候,老师以“同学们看过海上日出吗?”引入新课,利用多媒体课件放映日出的全过程并把太阳抽象成一个圆,海平面抽象成一条直线,进而让学生讨论圆与直线有几种位置关系?再用几何画版放映出圆与直线的位置关系的变化过程,最后归纳出圆与直线的相切、相交、相离的三种相对位置关系。
这样从实际生活和情景中引入新知,符合探求知识的规律,这样安排一下就吸引住了学生的注意力,学生亲身经历了数学问题的产生过程,感受到数学知识与生活的密切联系和无限趣味,同时也可激发了学生的学习兴趣。
四、实践尝试法
人的认知过程是一个实践和认识螺旋上升的过程。苏霍姆林斯基说:“应让学生通过实践去证明一个解释或推翻另一个解释。”在教学中放手让学生通过自己操作、实验去发现规律,主动认识。使抽象的数学内容具体化、形象化,这样印象会更深,掌握知识会更牢。心理学的研究也表明,让学生从多种不同的感觉渠道同时往大脑输送相关的信息,有利于对相应的数学理论的认知和掌握。
例如,在讲三角形内角和为180度时,可让学生将三角形的三个内角剪下拼在一起,在实践中总结出内角和等于180度的结论,使学生享受到发现真理的快乐。这种导入新课的好处在于培养学生动手动脑的习惯,克服懒惰思想,充分调动学生多种感官参与实践活动,有利于诱发学习数学的浓厚兴趣,让他们自己发现问题,回答和解决他们自己的问题,使他们成为知识的发现者,从而培养他们的创造性思维能力。
五、类比归结法
类比归结导入是通过比较两个或两类数学对象的共同属性来引入新课的方法。由于初中数学内容具有较强的系统性,前后知识衔接紧密,所以由类比导入新课在初中数学教学中最为常见。例如,分式与分数在表达形式、基本性质、运算法则等方面都非常相似, 如果在教学分式时, 引导学生将分式与分数进行类比, 则关于分式的教学将会更加自然顺利。又如,讲解不等式的解法时可用方程的解法类比,这样既能使学生抓住共同点,又能使学生认清不同点。采用这种方法导入新课,是培养学生合情推理的重要手段。教师施展自己的才能挖掘教材中可作类比的内容来导入新课,必然会使学生从中学到运用类比的思维方法去猜测和发现新问题及解决问题的方法,并且尝到由此带来的乐趣,提高学习的积极性。
当然,教无定法,课堂导入的方法是也应是多种多样的。导入方法在运用时要因人而宜,因教学内容而宜。不是每一节课的内容都有十分巧妙的导入,所以不必每一节课都要绞尽脑汁去设计,有时简单的温故导入法、直接导入法等也会起到很好的效果。无论用哪种方式导入,必须使问题情境结构、数学知识结构和学生的认识结构三者和谐的统一,从而才能真正提高课堂导入的实效性。