论文部分内容阅读
粒子滤波算法由于其处理非线性非高斯的能力优势,目前应用领域非常广泛。然而粒子滤波中存在的粒子退化、样贫等问题同样不容忽视,针对这些问题提出了一种改进的重采样粒子滤波算法。该方法借鉴了部分分层重采样和残差重采样的思路,通过对粒子权值大中小分类,在兼顾粒子多样性的情况下用不同策略分层次复制三个集合样本,从而优化了重采样算法。最后通过与经典粒子滤波重采样算法和其他部分重采样(PR)算法相比,以一维非线性跟踪模(UNG)和二维纯角度跟踪模型(BOT)两个模型的仿真结果验证了所提算法的滤波性能和有效性。