论文部分内容阅读
基于 Gibbs分布的 Markov随机场是一个重要的先验模型 ,能够简单地通过势能形式表示图像像素之间的相互作用 ,从而把图像的先验知识和图像分割的数学模型相结合 .利用 Markov随机场方法提出了脑磁共振图像最大后验概率的分割模型 ,并通过迭代条件方法求解 ,与传统的 K均值算法作比较 ,证明了算法的有效性