【摘 要】
:
针对网络化多智能体的分布式优化问题,本文讨论一种只利用邻居相对状态的符号信息的分布式算法.该算法不要求与图相关的权重矩阵是双随机矩阵.首先利用优化理论中的惩罚函数
【机 构】
:
清华大学自动化系,清华大学北京信息科学与技术国家研究中心
【基金项目】
:
国家自然科学基金(61722308),国家重点研发计划(2017YFC0805310).
论文部分内容阅读
针对网络化多智能体的分布式优化问题,本文讨论一种只利用邻居相对状态的符号信息的分布式算法.该算法不要求与图相关的权重矩阵是双随机矩阵.首先利用优化理论中的惩罚函数法解释该算法,然后分析算法在静态图上的收敛性以及收敛速度.与现有使用邻居相对状态的完整信息的分布式梯度下降算法相比,所提算法的收敛速度并没有本质上降低.另一方面,将所提算法扩展到确定性和随机性的时变图上,并给出相应的收敛性结论.最后,通过数值仿真实验验证算法的有效性.
其他文献
摘要 近年来,由大量具有感知、计算和通信能力的微型传感器组成的传感器网络越来越广泛地应用在生产及生活的方方面面.另一方面,随着微电子及数字信号技术的发展,利用采样数据的离散化的数字控制器或滤波器被普遍使用.为了反映这个新兴领域的最新进展,本文对传感器网络环境中基于采样数据分布式滤波的研究展开了综述.首先,综述了传感器网络中几种分布式滤波方法的研究进展.然后,针对不同的采样方式,详细总结了采样数据
大气细颗粒物PM2.5污染引起的雾霾天气既与本地污染物排放密切有关.也受局地特殊的风场影响.本文以武汉城市区域为研究对象,分别研究了长江沿岸的江陆风环流、东湖沿岸湖陆风环